大脑皮层祖细胞的克隆谱系追踪和转录组学揭示了分化潜能的维持。

IF 5.9 2区 医学 Q1 CELL & TISSUE ENGINEERING
Danyon Harkins, Shawar Ali, Teodora Tockovska, Sara Ciganovic, Daniela Lozano Casasbuenas, Samuel Watanabe, Stephanie Ouzikov, Scott A Yuzwa
{"title":"大脑皮层祖细胞的克隆谱系追踪和转录组学揭示了分化潜能的维持。","authors":"Danyon Harkins, Shawar Ali, Teodora Tockovska, Sara Ciganovic, Daniela Lozano Casasbuenas, Samuel Watanabe, Stephanie Ouzikov, Scott A Yuzwa","doi":"10.1016/j.stemcr.2025.102418","DOIUrl":null,"url":null,"abstract":"<p><p>Postnatal neocortical development is a complex period wherein radial glial progenitors (RGPs) complete excitatory neurogenesis and transition to the production of glia. Here, we take advantage of a multi-layered lineage tracing tool pbacBarcode, to examine the contributions of individual cortical RGPs to the postnatal cortex. We reveal that some individual cortical RGPs are multipotent and give rise to olfactory bulb interneurons, astrocytes, and oligodendrocytes in a ∼2:1:1 ratio. We provide evidence that differentiation potential into terminal cell types is maintained as late as post-natal day (P)4, suggesting that a population decline model, as opposed to cell fate restriction, underlies postnatal neocortical development. Moreover, a pool of proliferative intermediary cells, which may represent a multipotent postnatal intermediate progenitor cell population, may contribute to the production of the three major cell types. Lastly, we examine RGP postnatal contribution to oligodendrocytes and show that oligodendrocyte progenitor founder cell production by cortical RGPs is largely complete by P3.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102418"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clonal lineage tracing and transcriptomics of cortical progenitor populations reveal maintenance of differentiation potential.\",\"authors\":\"Danyon Harkins, Shawar Ali, Teodora Tockovska, Sara Ciganovic, Daniela Lozano Casasbuenas, Samuel Watanabe, Stephanie Ouzikov, Scott A Yuzwa\",\"doi\":\"10.1016/j.stemcr.2025.102418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Postnatal neocortical development is a complex period wherein radial glial progenitors (RGPs) complete excitatory neurogenesis and transition to the production of glia. Here, we take advantage of a multi-layered lineage tracing tool pbacBarcode, to examine the contributions of individual cortical RGPs to the postnatal cortex. We reveal that some individual cortical RGPs are multipotent and give rise to olfactory bulb interneurons, astrocytes, and oligodendrocytes in a ∼2:1:1 ratio. We provide evidence that differentiation potential into terminal cell types is maintained as late as post-natal day (P)4, suggesting that a population decline model, as opposed to cell fate restriction, underlies postnatal neocortical development. Moreover, a pool of proliferative intermediary cells, which may represent a multipotent postnatal intermediate progenitor cell population, may contribute to the production of the three major cell types. Lastly, we examine RGP postnatal contribution to oligodendrocytes and show that oligodendrocyte progenitor founder cell production by cortical RGPs is largely complete by P3.</p>\",\"PeriodicalId\":21885,\"journal\":{\"name\":\"Stem Cell Reports\",\"volume\":\" \",\"pages\":\"102418\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stemcr.2025.102418\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2025.102418","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clonal lineage tracing and transcriptomics of cortical progenitor populations reveal maintenance of differentiation potential.

Postnatal neocortical development is a complex period wherein radial glial progenitors (RGPs) complete excitatory neurogenesis and transition to the production of glia. Here, we take advantage of a multi-layered lineage tracing tool pbacBarcode, to examine the contributions of individual cortical RGPs to the postnatal cortex. We reveal that some individual cortical RGPs are multipotent and give rise to olfactory bulb interneurons, astrocytes, and oligodendrocytes in a ∼2:1:1 ratio. We provide evidence that differentiation potential into terminal cell types is maintained as late as post-natal day (P)4, suggesting that a population decline model, as opposed to cell fate restriction, underlies postnatal neocortical development. Moreover, a pool of proliferative intermediary cells, which may represent a multipotent postnatal intermediate progenitor cell population, may contribute to the production of the three major cell types. Lastly, we examine RGP postnatal contribution to oligodendrocytes and show that oligodendrocyte progenitor founder cell production by cortical RGPs is largely complete by P3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Reports
Stem Cell Reports CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
10.50
自引率
1.70%
发文量
200
审稿时长
28 weeks
期刊介绍: Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信