{"title":"基于二氧化钒的亚毫瓦阈值功率和可调偏置全光非线性激活函数用于波分复用光子神经网络。","authors":"Jorge Parra, Juan Navarro-Arenas, Pablo Sanchis","doi":"10.1038/s41598-025-90350-3","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing demand for efficient hardware in neural computation highlights the limitations of electronic-based systems in terms of speed, energy efficiency, and scalability. Wavelength-division multiplexing (WDM) photonic neural networks offer a high-bandwidth, low-latency alternative but require effective photonic activation functions. Here, we propose a power-efficient and tunable-bias all-optical nonlinear activation function using vanadium dioxide (VO<sub>2</sub>) for WDM photonic neural networks. We engineered a SiN/BTO waveguide with a VO<sub>2</sub> patch to exploit the phase-change material's reversible insulator-to-metal transition (IMT) for nonlinear activation. We conducted numerical simulations to optimize the waveguide geometry and VO<sub>2</sub> parameters, minimizing propagation and coupling losses while achieving a strong nonlinear response and low-threshold activation power. Our proposed device features a sub-milliwatt threshold power, a footprint of 5 μm, and an ELU-like activation function. Moreover, the bias of our device could be thermally tuned, improving the speed and power efficiency. On the other hand, performance evaluations using the CIFAR-10 dataset confirmed the device's potential for convolutional neural networks (CNN). Our results show that a hybrid VO<sub>2</sub>/SiN/BTO platform could play a prominent role in the path toward the development of high-performance photonic neural networks.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"5608"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829994/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sub-milliwatt threshold power and tunable-bias all-optical nonlinear activation function using vanadium dioxide for wavelength-division multiplexing photonic neural networks.\",\"authors\":\"Jorge Parra, Juan Navarro-Arenas, Pablo Sanchis\",\"doi\":\"10.1038/s41598-025-90350-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing demand for efficient hardware in neural computation highlights the limitations of electronic-based systems in terms of speed, energy efficiency, and scalability. Wavelength-division multiplexing (WDM) photonic neural networks offer a high-bandwidth, low-latency alternative but require effective photonic activation functions. Here, we propose a power-efficient and tunable-bias all-optical nonlinear activation function using vanadium dioxide (VO<sub>2</sub>) for WDM photonic neural networks. We engineered a SiN/BTO waveguide with a VO<sub>2</sub> patch to exploit the phase-change material's reversible insulator-to-metal transition (IMT) for nonlinear activation. We conducted numerical simulations to optimize the waveguide geometry and VO<sub>2</sub> parameters, minimizing propagation and coupling losses while achieving a strong nonlinear response and low-threshold activation power. Our proposed device features a sub-milliwatt threshold power, a footprint of 5 μm, and an ELU-like activation function. Moreover, the bias of our device could be thermally tuned, improving the speed and power efficiency. On the other hand, performance evaluations using the CIFAR-10 dataset confirmed the device's potential for convolutional neural networks (CNN). Our results show that a hybrid VO<sub>2</sub>/SiN/BTO platform could play a prominent role in the path toward the development of high-performance photonic neural networks.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"5608\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-90350-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-90350-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Sub-milliwatt threshold power and tunable-bias all-optical nonlinear activation function using vanadium dioxide for wavelength-division multiplexing photonic neural networks.
The increasing demand for efficient hardware in neural computation highlights the limitations of electronic-based systems in terms of speed, energy efficiency, and scalability. Wavelength-division multiplexing (WDM) photonic neural networks offer a high-bandwidth, low-latency alternative but require effective photonic activation functions. Here, we propose a power-efficient and tunable-bias all-optical nonlinear activation function using vanadium dioxide (VO2) for WDM photonic neural networks. We engineered a SiN/BTO waveguide with a VO2 patch to exploit the phase-change material's reversible insulator-to-metal transition (IMT) for nonlinear activation. We conducted numerical simulations to optimize the waveguide geometry and VO2 parameters, minimizing propagation and coupling losses while achieving a strong nonlinear response and low-threshold activation power. Our proposed device features a sub-milliwatt threshold power, a footprint of 5 μm, and an ELU-like activation function. Moreover, the bias of our device could be thermally tuned, improving the speed and power efficiency. On the other hand, performance evaluations using the CIFAR-10 dataset confirmed the device's potential for convolutional neural networks (CNN). Our results show that a hybrid VO2/SiN/BTO platform could play a prominent role in the path toward the development of high-performance photonic neural networks.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.