Juan Liu, Yuangang Zhu, Xinyue Liu, Jian Song, Ligang Tang, Liang Shen, Zhongmin Dai
{"title":"糯小麦品种胚乳表皮细胞的形态发育。","authors":"Juan Liu, Yuangang Zhu, Xinyue Liu, Jian Song, Ligang Tang, Liang Shen, Zhongmin Dai","doi":"10.1007/s00709-025-02034-4","DOIUrl":null,"url":null,"abstract":"<p><p>Endosperm epidermal cells (EECs) accumulate large quantities of nutrients; they also play key roles in facilitating solute transport. Comprehensive knowledge about the dynamic development of EECs is needed to understand the relationship between their dual functions. In this study, the developmental characteristics of EECs in wheat grains of two near-isogenic lines (Shimai19-P and Shimai19-N) and in the parent wheat cultivar Shimai19 were compared using light and scanning electron microscopy. The intermediate EECs located adjacent to the nucellar projection (NP) on the ventral surface of wheat grains rapidly differentiated. Eight days after pollination (8 DAP), these EECs were larger in Shimai19-N than in the other wheat cultivars; they had differentiated into endosperm transfer cells (ETCs). At 14 DAP, the number of ETCs reached a maximum and then gradually decreased in all three wheat varieties. The lateral ETCs and the ETCs on both sides of the crease were longer than ACs; they reached their maximum length at 16 DAP, becoming gradually shorter thereafter. The dorsal ACs became increasingly thicker during wheat grain development. Overall, these results suggested that EECs near the EC and crease are important for efficient nutrient transport, whereas EECs in other regions of wheat grains mainly play a role in nutrient storage.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological development of the endosperm epidermal cells in waxy wheat cultivars.\",\"authors\":\"Juan Liu, Yuangang Zhu, Xinyue Liu, Jian Song, Ligang Tang, Liang Shen, Zhongmin Dai\",\"doi\":\"10.1007/s00709-025-02034-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endosperm epidermal cells (EECs) accumulate large quantities of nutrients; they also play key roles in facilitating solute transport. Comprehensive knowledge about the dynamic development of EECs is needed to understand the relationship between their dual functions. In this study, the developmental characteristics of EECs in wheat grains of two near-isogenic lines (Shimai19-P and Shimai19-N) and in the parent wheat cultivar Shimai19 were compared using light and scanning electron microscopy. The intermediate EECs located adjacent to the nucellar projection (NP) on the ventral surface of wheat grains rapidly differentiated. Eight days after pollination (8 DAP), these EECs were larger in Shimai19-N than in the other wheat cultivars; they had differentiated into endosperm transfer cells (ETCs). At 14 DAP, the number of ETCs reached a maximum and then gradually decreased in all three wheat varieties. The lateral ETCs and the ETCs on both sides of the crease were longer than ACs; they reached their maximum length at 16 DAP, becoming gradually shorter thereafter. The dorsal ACs became increasingly thicker during wheat grain development. Overall, these results suggested that EECs near the EC and crease are important for efficient nutrient transport, whereas EECs in other regions of wheat grains mainly play a role in nutrient storage.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-025-02034-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-025-02034-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
胚乳表皮细胞(EECs)积累大量营养物质;它们在促进溶质运输方面也起着关键作用。要理解经济共同体的双重功能之间的关系,就需要全面了解经济共同体的动态发展。利用光镜和扫描电镜比较了近等基因系“世麦19- p”和“世麦19- n”与亲本“世麦19”籽粒EECs的发育特征。位于小麦籽粒腹面核突(NP)附近的中间EECs分化迅速。授粉后8 d (8dap),施麦19- n的EECs大于其他小麦品种;分化为胚乳转移细胞(ETCs)。在14 DAP时,3个小麦品种的ETCs数量均达到最大值,然后逐渐减少。侧边ETCs和两侧ETCs均比ACs长;在16 DAP时达到最大长度,此后逐渐变短。在小麦籽粒发育过程中,背侧ac逐渐变厚。综上所述,小麦籽粒中靠近外径和皱褶的外径对营养物质的有效运输起重要作用,而其他区域的外径主要起营养物质储存的作用。
Morphological development of the endosperm epidermal cells in waxy wheat cultivars.
Endosperm epidermal cells (EECs) accumulate large quantities of nutrients; they also play key roles in facilitating solute transport. Comprehensive knowledge about the dynamic development of EECs is needed to understand the relationship between their dual functions. In this study, the developmental characteristics of EECs in wheat grains of two near-isogenic lines (Shimai19-P and Shimai19-N) and in the parent wheat cultivar Shimai19 were compared using light and scanning electron microscopy. The intermediate EECs located adjacent to the nucellar projection (NP) on the ventral surface of wheat grains rapidly differentiated. Eight days after pollination (8 DAP), these EECs were larger in Shimai19-N than in the other wheat cultivars; they had differentiated into endosperm transfer cells (ETCs). At 14 DAP, the number of ETCs reached a maximum and then gradually decreased in all three wheat varieties. The lateral ETCs and the ETCs on both sides of the crease were longer than ACs; they reached their maximum length at 16 DAP, becoming gradually shorter thereafter. The dorsal ACs became increasingly thicker during wheat grain development. Overall, these results suggested that EECs near the EC and crease are important for efficient nutrient transport, whereas EECs in other regions of wheat grains mainly play a role in nutrient storage.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".