骨质疏松症中内质网应激和线粒体功能障碍相关生物标志物的鉴定。

IF 2.5 3区 生物学
Yuxi Chen, Ke Bi, Chunzhi Zhang, Jiaao Gu, Zhange Yu, Jianping Lu, Lei Yu
{"title":"骨质疏松症中内质网应激和线粒体功能障碍相关生物标志物的鉴定。","authors":"Yuxi Chen, Ke Bi, Chunzhi Zhang, Jiaao Gu, Zhange Yu, Jianping Lu, Lei Yu","doi":"10.1186/s41065-025-00387-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endoplasmic reticulum stress (ERS) and mitochondrial dysfunction (MD) involved in bone metabolism disorders. However, the particular mechanisms of ERS and MD related genes (ERS&MDRGs) in osteoporosis (OP) have not been elucidated. In present study, biomarkers related to ERS and MD in OP were identified.</p><p><strong>Methods: </strong>Differentially expressed genes (DEGs) were obtained based on GEO dataset. ERS&MDRGs were derived from Genecard database. Initially, ERS&MD related DEGs (ERS&MDRDEGs) were obtained by overlapping DEGs and ERS&MDRGs. The key module was screened by WGCNA. The intersection of ERS&MDRDEGs and key module was screened by machine learning to obtain key genes. Then, receiver operating characteristic curve (ROC) was drawn to calculated diagnostic accuracy of key genes. The ssGSEA and Cibersort algorithms were performed to analyze immune cell infiltration. The miRNA-mRNA-TF network were draw by cytoscape software. Moleculaer docking and DGIdb database were employed for screening potential drugs. Finally, the expression of key genes was verified by qRT-PCR.</p><p><strong>Results: </strong>The 122 ERS&MDRDEGs were obtained by preliminary screening. ERS&MDRDEGs were mainly enriched in lipid metabolism, calcium ion transport, and ossification. The 5 key genes were identified, including AAAS, ESR1, SLC12A2, TAF15, and VAMP2. Immune infiltration analysis showed monocyte and macrophage were different between OP and control groups. The miRNA-mRNA-TF regulatory network indicated has-miR-625-5p, has-miR-296-3p, CTCT and EP300 as potential regulatory targets. The 2 potential small molecule drugs, namely bumetanide and elacestrant were screened. The expression of AAAS, ESR1, VAMP2 were higher, and SLC12A2 and TAF15 were lower in OP than control group.</p><p><strong>Conclusion: </strong>This research identified 5 key genes AAAS, ESR1, SLC12A2, TAF15 and VAMP2. Bumetanide and elacestrant were potential drugs. These findings provided valuable insights into the pathophysiology of OP and the development of new therapeutic strategies.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"21"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827247/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of endoplasmic reticulum stress and mitochondrial dysfunction related biomarkers in osteoporosis.\",\"authors\":\"Yuxi Chen, Ke Bi, Chunzhi Zhang, Jiaao Gu, Zhange Yu, Jianping Lu, Lei Yu\",\"doi\":\"10.1186/s41065-025-00387-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Endoplasmic reticulum stress (ERS) and mitochondrial dysfunction (MD) involved in bone metabolism disorders. However, the particular mechanisms of ERS and MD related genes (ERS&MDRGs) in osteoporosis (OP) have not been elucidated. In present study, biomarkers related to ERS and MD in OP were identified.</p><p><strong>Methods: </strong>Differentially expressed genes (DEGs) were obtained based on GEO dataset. ERS&MDRGs were derived from Genecard database. Initially, ERS&MD related DEGs (ERS&MDRDEGs) were obtained by overlapping DEGs and ERS&MDRGs. The key module was screened by WGCNA. The intersection of ERS&MDRDEGs and key module was screened by machine learning to obtain key genes. Then, receiver operating characteristic curve (ROC) was drawn to calculated diagnostic accuracy of key genes. The ssGSEA and Cibersort algorithms were performed to analyze immune cell infiltration. The miRNA-mRNA-TF network were draw by cytoscape software. Moleculaer docking and DGIdb database were employed for screening potential drugs. Finally, the expression of key genes was verified by qRT-PCR.</p><p><strong>Results: </strong>The 122 ERS&MDRDEGs were obtained by preliminary screening. ERS&MDRDEGs were mainly enriched in lipid metabolism, calcium ion transport, and ossification. The 5 key genes were identified, including AAAS, ESR1, SLC12A2, TAF15, and VAMP2. Immune infiltration analysis showed monocyte and macrophage were different between OP and control groups. The miRNA-mRNA-TF regulatory network indicated has-miR-625-5p, has-miR-296-3p, CTCT and EP300 as potential regulatory targets. The 2 potential small molecule drugs, namely bumetanide and elacestrant were screened. The expression of AAAS, ESR1, VAMP2 were higher, and SLC12A2 and TAF15 were lower in OP than control group.</p><p><strong>Conclusion: </strong>This research identified 5 key genes AAAS, ESR1, SLC12A2, TAF15 and VAMP2. Bumetanide and elacestrant were potential drugs. These findings provided valuable insights into the pathophysiology of OP and the development of new therapeutic strategies.</p>\",\"PeriodicalId\":12862,\"journal\":{\"name\":\"Hereditas\",\"volume\":\"162 1\",\"pages\":\"21\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827247/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditas\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s41065-025-00387-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00387-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:内质网应激(ERS)和线粒体功能障碍(MD)与骨代谢紊乱有关。然而,ERS和MD相关基因(ERS&MDRGs)在骨质疏松症(OP)中的具体机制尚未阐明。本研究鉴定了OP中与ERS和MD相关的生物标志物。方法:基于GEO数据集获取差异表达基因(DEGs)。ERS&MDRGs来源于Genecard数据库。最初,ERS&MDRGs与ERS&MDRGs重叠得到ERS&MDRGs相关基因(ERS&MDRGs)。关键模块由WGCNA进行筛选。通过机器学习筛选ERS&MDRDEGs与关键模块的交集,获得关键基因。然后绘制受试者工作特征曲线(ROC),计算关键基因的诊断准确率。采用ssGSEA和Cibersort算法分析免疫细胞浸润。通过细胞景观软件绘制miRNA-mRNA-TF网络。利用分子对接和DGIdb数据库筛选潜在药物。最后通过qRT-PCR验证关键基因的表达情况。结果:初步筛选得到122个ers&mdrdeg。ERS&MDRDEGs主要富集于脂质代谢、钙离子转运和骨化。鉴定出5个关键基因,分别为AAAS、ESR1、SLC12A2、TAF15和VAMP2。免疫浸润分析显示OP组与对照组单核细胞和巨噬细胞有差异。miRNA-mRNA-TF调控网络表明has-miR-625-5p、has-miR-296-3p、CTCT和EP300是潜在的调控靶点。筛选了布美他尼和松解剂两种潜在的小分子药物。与对照组相比,OP组AAAS、ESR1、VAMP2表达升高,SLC12A2、TAF15表达降低。结论:本研究鉴定出5个关键基因AAAS、ESR1、SLC12A2、TAF15和VAMP2。布美他尼和松紧剂是潜在的药物。这些发现为OP的病理生理学和新的治疗策略的发展提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of endoplasmic reticulum stress and mitochondrial dysfunction related biomarkers in osteoporosis.

Background: Endoplasmic reticulum stress (ERS) and mitochondrial dysfunction (MD) involved in bone metabolism disorders. However, the particular mechanisms of ERS and MD related genes (ERS&MDRGs) in osteoporosis (OP) have not been elucidated. In present study, biomarkers related to ERS and MD in OP were identified.

Methods: Differentially expressed genes (DEGs) were obtained based on GEO dataset. ERS&MDRGs were derived from Genecard database. Initially, ERS&MD related DEGs (ERS&MDRDEGs) were obtained by overlapping DEGs and ERS&MDRGs. The key module was screened by WGCNA. The intersection of ERS&MDRDEGs and key module was screened by machine learning to obtain key genes. Then, receiver operating characteristic curve (ROC) was drawn to calculated diagnostic accuracy of key genes. The ssGSEA and Cibersort algorithms were performed to analyze immune cell infiltration. The miRNA-mRNA-TF network were draw by cytoscape software. Moleculaer docking and DGIdb database were employed for screening potential drugs. Finally, the expression of key genes was verified by qRT-PCR.

Results: The 122 ERS&MDRDEGs were obtained by preliminary screening. ERS&MDRDEGs were mainly enriched in lipid metabolism, calcium ion transport, and ossification. The 5 key genes were identified, including AAAS, ESR1, SLC12A2, TAF15, and VAMP2. Immune infiltration analysis showed monocyte and macrophage were different between OP and control groups. The miRNA-mRNA-TF regulatory network indicated has-miR-625-5p, has-miR-296-3p, CTCT and EP300 as potential regulatory targets. The 2 potential small molecule drugs, namely bumetanide and elacestrant were screened. The expression of AAAS, ESR1, VAMP2 were higher, and SLC12A2 and TAF15 were lower in OP than control group.

Conclusion: This research identified 5 key genes AAAS, ESR1, SLC12A2, TAF15 and VAMP2. Bumetanide and elacestrant were potential drugs. These findings provided valuable insights into the pathophysiology of OP and the development of new therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hereditas
Hereditas Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍: For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信