下调TRIM35通过抑制TLR4/NF-κB通路抑制氧化应激和炎症,减轻阿霉素诱导的心脏毒性。

IF 3.1 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Yewen Hu, Shiqi Wang, Chaoxia Zhang, Fuwei He, Yongxing Jiang, Ruoyu Chen, Jia Su, Caijie Shen, Xiaomin Chen, Huimin Chu
{"title":"下调TRIM35通过抑制TLR4/NF-κB通路抑制氧化应激和炎症,减轻阿霉素诱导的心脏毒性。","authors":"Yewen Hu, Shiqi Wang, Chaoxia Zhang, Fuwei He, Yongxing Jiang, Ruoyu Chen, Jia Su, Caijie Shen, Xiaomin Chen, Huimin Chu","doi":"10.1007/s10557-025-07672-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The use of doxorubicin (DOX), a potent chemotherapy drug, is limited by its detrimental effects on the heart. This cardiotoxicity is primarily driven by oxidative stress and inflammation. TRIM35 plays a key role in inflammatory responses; however, its exact function in DOX-induced cardiotoxicity (DIC) remains to be fully understood. This study investigates the effects of TRIM35 on DIC and explores the underlying biological mechanisms.</p><p><strong>Methods: </strong>To assess the role of TRIM35, we reduced the expression of TRIM35 in the heart tissues of mice using an adeno-associated virus 9 (AAV9) system, delivered through tail vein injection. We then administered weekly doses of DOX (4 mg/kg) to C57BL/6 mice for 4 weeks to induce DIC. Echocardiography, histopathological assessments, and molecular techniques were employed to examine the effects and mechanisms of TRIM35 on DIC.</p><p><strong>Results: </strong>Our research found that DOX treatment increases TRIM35 levels in the heart. By lowering TRIM35 expression, we observed an improvement in cardiac function and a decrease in myocardial damage in DOX-treated mice. Additionally, reduced TRIM35 expression lessened myocardial hypertrophy and fibrosis. It also mitigated the oxidative stress and inflammation caused by DOX. Furthermore, the down-regulation of TRIM35 expression resulted in the downregulation of TLR4 and phosphorylated P65 expression.</p><p><strong>Conclusion: </strong>Downregulated TRIM35 expression mitigates the oxidative stress and inflammation caused by DOX, likely through impacting the TLR4/NF-κB signaling pathway. These insights indicate that TRIM35 holds promise as a therapeutic target for managing heart damage induced by DOX.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downregulated TRIM35 Alleviates Doxorubicin-Induced Cardiotoxicity by Suppressing Oxidative Stress and Inflammation via Inhibiting TLR4/NF-κB Pathway.\",\"authors\":\"Yewen Hu, Shiqi Wang, Chaoxia Zhang, Fuwei He, Yongxing Jiang, Ruoyu Chen, Jia Su, Caijie Shen, Xiaomin Chen, Huimin Chu\",\"doi\":\"10.1007/s10557-025-07672-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The use of doxorubicin (DOX), a potent chemotherapy drug, is limited by its detrimental effects on the heart. This cardiotoxicity is primarily driven by oxidative stress and inflammation. TRIM35 plays a key role in inflammatory responses; however, its exact function in DOX-induced cardiotoxicity (DIC) remains to be fully understood. This study investigates the effects of TRIM35 on DIC and explores the underlying biological mechanisms.</p><p><strong>Methods: </strong>To assess the role of TRIM35, we reduced the expression of TRIM35 in the heart tissues of mice using an adeno-associated virus 9 (AAV9) system, delivered through tail vein injection. We then administered weekly doses of DOX (4 mg/kg) to C57BL/6 mice for 4 weeks to induce DIC. Echocardiography, histopathological assessments, and molecular techniques were employed to examine the effects and mechanisms of TRIM35 on DIC.</p><p><strong>Results: </strong>Our research found that DOX treatment increases TRIM35 levels in the heart. By lowering TRIM35 expression, we observed an improvement in cardiac function and a decrease in myocardial damage in DOX-treated mice. Additionally, reduced TRIM35 expression lessened myocardial hypertrophy and fibrosis. It also mitigated the oxidative stress and inflammation caused by DOX. Furthermore, the down-regulation of TRIM35 expression resulted in the downregulation of TLR4 and phosphorylated P65 expression.</p><p><strong>Conclusion: </strong>Downregulated TRIM35 expression mitigates the oxidative stress and inflammation caused by DOX, likely through impacting the TLR4/NF-κB signaling pathway. These insights indicate that TRIM35 holds promise as a therapeutic target for managing heart damage induced by DOX.</p>\",\"PeriodicalId\":9557,\"journal\":{\"name\":\"Cardiovascular Drugs and Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Drugs and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10557-025-07672-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-025-07672-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:多柔比星(DOX)是一种强效化疗药物,因其对心脏的有害作用而受到限制。这种心脏毒性主要是由氧化应激和炎症引起的。TRIM35在炎症反应中起关键作用;然而,其在dox诱导的心脏毒性(DIC)中的确切功能尚不完全清楚。本研究探讨TRIM35对DIC的影响,并探讨其潜在的生物学机制。方法:为了评估TRIM35的作用,我们使用腺相关病毒9 (AAV9)系统,通过尾静脉注射给药,降低TRIM35在小鼠心脏组织中的表达。然后,我们给C57BL/6小鼠每周剂量的DOX (4mg /kg),连续4周诱导DIC。采用超声心动图、组织病理学评估和分子技术研究TRIM35对DIC的影响及其机制。结果:我们的研究发现,DOX治疗增加了心脏中的TRIM35水平。通过降低TRIM35的表达,我们观察到dox处理小鼠心功能的改善和心肌损伤的减少。此外,TRIM35表达降低可减轻心肌肥大和纤维化。它还能减轻DOX引起的氧化应激和炎症。此外,TRIM35表达下调导致TLR4和磷酸化P65表达下调。结论:TRIM35表达下调可能通过影响TLR4/NF-κB信号通路减轻DOX引起的氧化应激和炎症。这些见解表明,TRIM35有望成为治疗DOX诱导的心脏损伤的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Downregulated TRIM35 Alleviates Doxorubicin-Induced Cardiotoxicity by Suppressing Oxidative Stress and Inflammation via Inhibiting TLR4/NF-κB Pathway.

Purpose: The use of doxorubicin (DOX), a potent chemotherapy drug, is limited by its detrimental effects on the heart. This cardiotoxicity is primarily driven by oxidative stress and inflammation. TRIM35 plays a key role in inflammatory responses; however, its exact function in DOX-induced cardiotoxicity (DIC) remains to be fully understood. This study investigates the effects of TRIM35 on DIC and explores the underlying biological mechanisms.

Methods: To assess the role of TRIM35, we reduced the expression of TRIM35 in the heart tissues of mice using an adeno-associated virus 9 (AAV9) system, delivered through tail vein injection. We then administered weekly doses of DOX (4 mg/kg) to C57BL/6 mice for 4 weeks to induce DIC. Echocardiography, histopathological assessments, and molecular techniques were employed to examine the effects and mechanisms of TRIM35 on DIC.

Results: Our research found that DOX treatment increases TRIM35 levels in the heart. By lowering TRIM35 expression, we observed an improvement in cardiac function and a decrease in myocardial damage in DOX-treated mice. Additionally, reduced TRIM35 expression lessened myocardial hypertrophy and fibrosis. It also mitigated the oxidative stress and inflammation caused by DOX. Furthermore, the down-regulation of TRIM35 expression resulted in the downregulation of TLR4 and phosphorylated P65 expression.

Conclusion: Downregulated TRIM35 expression mitigates the oxidative stress and inflammation caused by DOX, likely through impacting the TLR4/NF-κB signaling pathway. These insights indicate that TRIM35 holds promise as a therapeutic target for managing heart damage induced by DOX.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Drugs and Therapy
Cardiovascular Drugs and Therapy 医学-心血管系统
CiteScore
8.30
自引率
0.00%
发文量
110
审稿时长
4.5 months
期刊介绍: Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field. Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients. Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信