使用定制的拟人化体影计算PET/CT成像中部分体积效应校正的恢复系数。

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Gunes Yavuz, Bilal Kovan, Turkay Toklu, Tevfik F Çermik, Cengizhan Öztürk
{"title":"使用定制的拟人化体影计算PET/CT成像中部分体积效应校正的恢复系数。","authors":"Gunes Yavuz, Bilal Kovan, Turkay Toklu, Tevfik F Çermik, Cengizhan Öztürk","doi":"10.1186/s12938-025-01330-7","DOIUrl":null,"url":null,"abstract":"<p><p>Positron Emission Tomography/Computed Tomography (PET/CT) combines metabolic and anatomical information improving the precision and accuracy of oncological diagnostics. The standardized uptake value (SUV) measures tumor metabolism, yet its accuracy is influenced by the partial volume effect (PVE), impacting small lesion detection. This study aims to refine PVE corrections for small lesions using an in-house customized, special anthropomorphic phantom. Scans of this phantom which contained spheres of different sizes were performed across four hospitals at different PET/CT systems from various manufacturers (Siemens and Philips analog PET/CT systems, GE analog and digital PET/CT systems). The phantom contained six custom-designed cylinders with embedded spheres simulating sub-centimeter (0.3, 0.5, 0.9) and centimeter (1.3, 1.9, 2.8) lesions. Scans were performed separately for each sphere in the thorax, abdomen, and pelvis regions at all sites. Recovery Coefficients (RCs) were calculated to correct SUV values, demonstrating that RCs vary by sphere size and anatomical region but not change significantly among scanners. RCs are approaching unity for larger spheres, ensuring accurate SUV measurements. However, small spheres (< 0.5 cm) exhibited significant measurement challenges due to PVE. The anthropomorphic phantom proved effective in obtaining realistic SUV-corrected values, offering a promising tool for enhancing the accuracy and standardization of PET imaging in oncology. This study underscores the necessity for advanced imaging technologies and standardized RC application in clinical settings to improve the quantification of PET imaging, particularly in small lesion detection.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"20"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830175/pdf/","citationCount":"0","resultStr":"{\"title\":\"Calculation of recovery coefficients for partial volume effect correction in PET/CT imaging using a customized anthropomorphic body phantom.\",\"authors\":\"Gunes Yavuz, Bilal Kovan, Turkay Toklu, Tevfik F Çermik, Cengizhan Öztürk\",\"doi\":\"10.1186/s12938-025-01330-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Positron Emission Tomography/Computed Tomography (PET/CT) combines metabolic and anatomical information improving the precision and accuracy of oncological diagnostics. The standardized uptake value (SUV) measures tumor metabolism, yet its accuracy is influenced by the partial volume effect (PVE), impacting small lesion detection. This study aims to refine PVE corrections for small lesions using an in-house customized, special anthropomorphic phantom. Scans of this phantom which contained spheres of different sizes were performed across four hospitals at different PET/CT systems from various manufacturers (Siemens and Philips analog PET/CT systems, GE analog and digital PET/CT systems). The phantom contained six custom-designed cylinders with embedded spheres simulating sub-centimeter (0.3, 0.5, 0.9) and centimeter (1.3, 1.9, 2.8) lesions. Scans were performed separately for each sphere in the thorax, abdomen, and pelvis regions at all sites. Recovery Coefficients (RCs) were calculated to correct SUV values, demonstrating that RCs vary by sphere size and anatomical region but not change significantly among scanners. RCs are approaching unity for larger spheres, ensuring accurate SUV measurements. However, small spheres (< 0.5 cm) exhibited significant measurement challenges due to PVE. The anthropomorphic phantom proved effective in obtaining realistic SUV-corrected values, offering a promising tool for enhancing the accuracy and standardization of PET imaging in oncology. This study underscores the necessity for advanced imaging technologies and standardized RC application in clinical settings to improve the quantification of PET imaging, particularly in small lesion detection.</p>\",\"PeriodicalId\":8927,\"journal\":{\"name\":\"BioMedical Engineering OnLine\",\"volume\":\"24 1\",\"pages\":\"20\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedical Engineering OnLine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12938-025-01330-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01330-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

正电子发射断层扫描/计算机断层扫描(PET/CT)结合了代谢和解剖信息,提高了肿瘤诊断的精度和准确性。标准化摄取值(SUV)测量肿瘤代谢,但其准确性受到部分体积效应(PVE)的影响,影响小病变的检测。本研究旨在使用内部定制的特殊拟人化假体来改进小病变的PVE校正。对这个包含不同大小球体的幻影进行扫描,在四家医院使用不同制造商的不同PET/CT系统(西门子和飞利浦模拟PET/CT系统,GE模拟和数字PET/CT系统)。该模型包含六个定制设计的圆柱体,其中嵌入了模拟亚厘米(0.3、0.5、0.9)和厘米(1.3、1.9、2.8)病变的球体。在所有部位分别对胸部、腹部和骨盆区域的每个球体进行扫描。通过计算恢复系数(RCs)来校正SUV值,结果表明RCs因球体大小和解剖区域而异,但在扫描仪之间变化不显著。对于更大的球体,rc正在接近统一,确保精确的SUV测量。然而,小球体(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculation of recovery coefficients for partial volume effect correction in PET/CT imaging using a customized anthropomorphic body phantom.

Positron Emission Tomography/Computed Tomography (PET/CT) combines metabolic and anatomical information improving the precision and accuracy of oncological diagnostics. The standardized uptake value (SUV) measures tumor metabolism, yet its accuracy is influenced by the partial volume effect (PVE), impacting small lesion detection. This study aims to refine PVE corrections for small lesions using an in-house customized, special anthropomorphic phantom. Scans of this phantom which contained spheres of different sizes were performed across four hospitals at different PET/CT systems from various manufacturers (Siemens and Philips analog PET/CT systems, GE analog and digital PET/CT systems). The phantom contained six custom-designed cylinders with embedded spheres simulating sub-centimeter (0.3, 0.5, 0.9) and centimeter (1.3, 1.9, 2.8) lesions. Scans were performed separately for each sphere in the thorax, abdomen, and pelvis regions at all sites. Recovery Coefficients (RCs) were calculated to correct SUV values, demonstrating that RCs vary by sphere size and anatomical region but not change significantly among scanners. RCs are approaching unity for larger spheres, ensuring accurate SUV measurements. However, small spheres (< 0.5 cm) exhibited significant measurement challenges due to PVE. The anthropomorphic phantom proved effective in obtaining realistic SUV-corrected values, offering a promising tool for enhancing the accuracy and standardization of PET imaging in oncology. This study underscores the necessity for advanced imaging technologies and standardized RC application in clinical settings to improve the quantification of PET imaging, particularly in small lesion detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信