利用激光增强法回收具有优异溶解动力学的电池阴极。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zixu Wang, Xin Hu, Hao Zhang, Yaduo Song, Yonggang Yao, Yunhui Huang
{"title":"利用激光增强法回收具有优异溶解动力学的电池阴极。","authors":"Zixu Wang,&nbsp;Xin Hu,&nbsp;Hao Zhang,&nbsp;Yaduo Song,&nbsp;Yonggang Yao,&nbsp;Yunhui Huang","doi":"10.1002/smtd.202401975","DOIUrl":null,"url":null,"abstract":"<p>The application of lithium-ion batteries challenges environmental sustainability and calls for efficient recycling toward circular economics. Hydrometallurgical recycling, despite being commercialized, still faces challenges such as harsh chemicals, high secondary waste generation, and low efficiencies. Intuitively, higher temperature leads to exponentially higher reaction kinetics (following Arrhenius's law), yet the dissolution temperature is limited to below 100 °C while heating the solution means more energy consumption. This study presents a laser-assisted wet leaching (Laser-WL) method that enables decoupled particle/solution temperatures, where the cathode particles are effectively heated by laser adsorption (30 W) to accelerate the dissolution kinetics (7–10 fold) while the solution remains cool for energy saving. Besides, physical laser ablation helps remove the robust solid electrolyte interface and cracks the particles to expose active materials, shortening the diffusion pathways and further enhancing the leaching kinetics. Therefore, Laser-WL can achieve an extraction rate of 95.6% in 15 min (traditional method &gt;3 h). It reduced the consumption of concentrated HCl by 87%, and water consumption by 27%. The method is applicable to various cathode materials and works for weak acids, thus presenting a sustainable and economically viable solution for metal recycling.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 7","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Battery Cathode Recycling With Superior Dissolution Kinetics by Laser Augmentation\",\"authors\":\"Zixu Wang,&nbsp;Xin Hu,&nbsp;Hao Zhang,&nbsp;Yaduo Song,&nbsp;Yonggang Yao,&nbsp;Yunhui Huang\",\"doi\":\"10.1002/smtd.202401975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The application of lithium-ion batteries challenges environmental sustainability and calls for efficient recycling toward circular economics. Hydrometallurgical recycling, despite being commercialized, still faces challenges such as harsh chemicals, high secondary waste generation, and low efficiencies. Intuitively, higher temperature leads to exponentially higher reaction kinetics (following Arrhenius's law), yet the dissolution temperature is limited to below 100 °C while heating the solution means more energy consumption. This study presents a laser-assisted wet leaching (Laser-WL) method that enables decoupled particle/solution temperatures, where the cathode particles are effectively heated by laser adsorption (30 W) to accelerate the dissolution kinetics (7–10 fold) while the solution remains cool for energy saving. Besides, physical laser ablation helps remove the robust solid electrolyte interface and cracks the particles to expose active materials, shortening the diffusion pathways and further enhancing the leaching kinetics. Therefore, Laser-WL can achieve an extraction rate of 95.6% in 15 min (traditional method &gt;3 h). It reduced the consumption of concentrated HCl by 87%, and water consumption by 27%. The method is applicable to various cathode materials and works for weak acids, thus presenting a sustainable and economically viable solution for metal recycling.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 7\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401975\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401975","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池的应用对环境的可持续性提出了挑战,需要有效的回收利用,以实现循环经济。湿法冶金回收虽然已经实现了商业化,但仍然面临着诸如刺激性化学品、高二次废物产生量和低效率等挑战。直观地说,温度越高,反应动力学指数越高(遵循阿伦尼乌斯定律),但溶解温度限制在100℃以下,而加热溶液意味着更多的能量消耗。本研究提出了一种激光辅助湿浸(laser- wl)方法,该方法可以实现颗粒/溶液温度的解耦,其中阴极颗粒通过激光吸附(30 W)有效加热以加速溶解动力学(7-10倍),同时溶液保持冷却以节省能源。此外,物理激光烧蚀有助于去除坚固的固体电解质界面并使颗粒破裂以暴露活性物质,缩短扩散路径,进一步提高浸出动力学。因此,激光- wl在15 min内的提取率达到95.6%(传统方法bbb30 h),浓缩盐酸的消耗减少87%,水的消耗减少27%。该方法适用于各种正极材料,并适用于弱酸,从而为金属回收提供了可持续和经济可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Battery Cathode Recycling With Superior Dissolution Kinetics by Laser Augmentation

The application of lithium-ion batteries challenges environmental sustainability and calls for efficient recycling toward circular economics. Hydrometallurgical recycling, despite being commercialized, still faces challenges such as harsh chemicals, high secondary waste generation, and low efficiencies. Intuitively, higher temperature leads to exponentially higher reaction kinetics (following Arrhenius's law), yet the dissolution temperature is limited to below 100 °C while heating the solution means more energy consumption. This study presents a laser-assisted wet leaching (Laser-WL) method that enables decoupled particle/solution temperatures, where the cathode particles are effectively heated by laser adsorption (30 W) to accelerate the dissolution kinetics (7–10 fold) while the solution remains cool for energy saving. Besides, physical laser ablation helps remove the robust solid electrolyte interface and cracks the particles to expose active materials, shortening the diffusion pathways and further enhancing the leaching kinetics. Therefore, Laser-WL can achieve an extraction rate of 95.6% in 15 min (traditional method >3 h). It reduced the consumption of concentrated HCl by 87%, and water consumption by 27%. The method is applicable to various cathode materials and works for weak acids, thus presenting a sustainable and economically viable solution for metal recycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信