具有能识别甲醇的胍基结构的BODIPY和香豆素荧光团组成的高级pH指示剂

IF 2.8 4区 化学 Q1 CHEMISTRY, ORGANIC
Dr. Tomohiro Umeno , Mio Tanaka , Moeka Fujihara , Naoko Iizuka , Shota Matsumoto , Dr. Kazuteru Usui , Prof. Satoru Karasawa
{"title":"具有能识别甲醇的胍基结构的BODIPY和香豆素荧光团组成的高级pH指示剂","authors":"Dr. Tomohiro Umeno ,&nbsp;Mio Tanaka ,&nbsp;Moeka Fujihara ,&nbsp;Naoko Iizuka ,&nbsp;Shota Matsumoto ,&nbsp;Dr. Kazuteru Usui ,&nbsp;Prof. Satoru Karasawa","doi":"10.1002/ajoc.202400605","DOIUrl":null,"url":null,"abstract":"<div><div>Guanidine is strongly basic and has a high molecular recognition ability. We previously developed a guanidine‐bearing benzoquinoline for the fluorescence detection of MeOH by exploiting the strong basicity of guanidine. The benzoquinoline fluorophore quantitatively detected MeOH in EtOH with moderate sensitivity and a limit of detection (LOD) of 16.5 %. In this study, we developed two guanidinyl boron dipyrromethene (BODIPY) and two guanidinyl coumarin fluorophores. These fluorophores have higher molar extinction coefficients (ϵ) than those of benzoquinolines, which suggests that they could have improved detection sensitivity. The BODIPY fluorophores exhibited acid‐responsive turn‐on fluorescence for MeOH, similar to the benzoquinoline fluorophore. Their high ϵ values led to an enhanced MeOH detection sensitivity of 1.3 % in EtOH. The coumarin derivatives exhibited acid‐responsive turn‐off fluorescence. In addition, the absorbance spectral shift of the protonated and neutral forms of coumarin enabled the ratiometric detection of MeOH (LOD=0.85 % and 0.57 %, respectively). This study demonstrates the utility of guanidine‐based fluorophores in molecular recognition and promotes the development of similar fluorophores in analytical chemistry.</div></div>","PeriodicalId":130,"journal":{"name":"Asian Journal of Organic Chemistry","volume":"14 2","pages":"Article e202400605"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced pH Indicators Consisting of BODIPY and Coumarin Fluorophores with a Guanidinyl Structure Capable of Methanol Recognition\",\"authors\":\"Dr. Tomohiro Umeno ,&nbsp;Mio Tanaka ,&nbsp;Moeka Fujihara ,&nbsp;Naoko Iizuka ,&nbsp;Shota Matsumoto ,&nbsp;Dr. Kazuteru Usui ,&nbsp;Prof. Satoru Karasawa\",\"doi\":\"10.1002/ajoc.202400605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Guanidine is strongly basic and has a high molecular recognition ability. We previously developed a guanidine‐bearing benzoquinoline for the fluorescence detection of MeOH by exploiting the strong basicity of guanidine. The benzoquinoline fluorophore quantitatively detected MeOH in EtOH with moderate sensitivity and a limit of detection (LOD) of 16.5 %. In this study, we developed two guanidinyl boron dipyrromethene (BODIPY) and two guanidinyl coumarin fluorophores. These fluorophores have higher molar extinction coefficients (ϵ) than those of benzoquinolines, which suggests that they could have improved detection sensitivity. The BODIPY fluorophores exhibited acid‐responsive turn‐on fluorescence for MeOH, similar to the benzoquinoline fluorophore. Their high ϵ values led to an enhanced MeOH detection sensitivity of 1.3 % in EtOH. The coumarin derivatives exhibited acid‐responsive turn‐off fluorescence. In addition, the absorbance spectral shift of the protonated and neutral forms of coumarin enabled the ratiometric detection of MeOH (LOD=0.85 % and 0.57 %, respectively). This study demonstrates the utility of guanidine‐based fluorophores in molecular recognition and promotes the development of similar fluorophores in analytical chemistry.</div></div>\",\"PeriodicalId\":130,\"journal\":{\"name\":\"Asian Journal of Organic Chemistry\",\"volume\":\"14 2\",\"pages\":\"Article e202400605\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2193580724004586\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2193580724004586","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

胍具有很强的碱性,具有较高的分子识别能力。我们利用胍的强碱性,开发了一种含胍的苯并喹啉,用于MeOH的荧光检测。苯并喹啉荧光团定量检测乙醇中的MeOH,灵敏度中等,检出限(LOD)为16.5%。在这项研究中,我们开发了两个胍基硼二吡啶(BODIPY)和两个胍基香豆素荧光团。这些荧光团具有比苯并喹啉类更高的摩尔消光系数(柱),这表明它们可以提高检测灵敏度。BODIPY荧光团对MeOH表现出酸响应性的开启荧光,类似于苯并喹啉荧光团。它们的高ε值使得MeOH在EtOH中的检测灵敏度提高了1.3%。香豆素衍生物表现出酸反应性关闭荧光。此外,质子化香豆素和中性香豆素的吸光度光谱位移使得MeOH的比例检测成为可能(LOD分别为0.85%和0.57%)。该研究证明了胍基荧光团在分子识别中的应用,并促进了分析化学中类似荧光团的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced pH Indicators Consisting of BODIPY and Coumarin Fluorophores with a Guanidinyl Structure Capable of Methanol Recognition
Guanidine is strongly basic and has a high molecular recognition ability. We previously developed a guanidine‐bearing benzoquinoline for the fluorescence detection of MeOH by exploiting the strong basicity of guanidine. The benzoquinoline fluorophore quantitatively detected MeOH in EtOH with moderate sensitivity and a limit of detection (LOD) of 16.5 %. In this study, we developed two guanidinyl boron dipyrromethene (BODIPY) and two guanidinyl coumarin fluorophores. These fluorophores have higher molar extinction coefficients (ϵ) than those of benzoquinolines, which suggests that they could have improved detection sensitivity. The BODIPY fluorophores exhibited acid‐responsive turn‐on fluorescence for MeOH, similar to the benzoquinoline fluorophore. Their high ϵ values led to an enhanced MeOH detection sensitivity of 1.3 % in EtOH. The coumarin derivatives exhibited acid‐responsive turn‐off fluorescence. In addition, the absorbance spectral shift of the protonated and neutral forms of coumarin enabled the ratiometric detection of MeOH (LOD=0.85 % and 0.57 %, respectively). This study demonstrates the utility of guanidine‐based fluorophores in molecular recognition and promotes the development of similar fluorophores in analytical chemistry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
3.70%
发文量
372
期刊介绍: Organic chemistry is the fundamental science that stands at the heart of chemistry, biology, and materials science. Research in these areas is vigorous and truly international, with three major regions making almost equal contributions: America, Europe and Asia. Asia now has its own top international organic chemistry journal—the Asian Journal of Organic Chemistry (AsianJOC) The AsianJOC is designed to be a top-ranked international research journal and publishes primary research as well as critical secondary information from authors across the world. The journal covers organic chemistry in its entirety. Authors and readers come from academia, the chemical industry, and government laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信