用哌甲酯膜修饰的新型丝网印刷碳电极用于线性扫描伏安法测定多巴胺

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Electroanalysis Pub Date : 2025-02-15 DOI:10.1002/elan.12028
Fernando Riesco, Gloria A. Cosco-Salguero, Edgar Nagles, Johisner Penagos-Llanos, Rodrigo Segura, John Hurtado
{"title":"用哌甲酯膜修饰的新型丝网印刷碳电极用于线性扫描伏安法测定多巴胺","authors":"Fernando Riesco,&nbsp;Gloria A. Cosco-Salguero,&nbsp;Edgar Nagles,&nbsp;Johisner Penagos-Llanos,&nbsp;Rodrigo Segura,&nbsp;John Hurtado","doi":"10.1002/elan.12028","DOIUrl":null,"url":null,"abstract":"<p>The development of new sensors for dopamine (DP) detection is crucial due to its role as one of the most important neurotransmitters for maintaining mental health. In this context, a novel and simple 2D screen-printed carbon electrode (SPCE) molecularly modified electrode with a methylphenidate film was developed. This electrode exhibited notable activity in DP oxidation at potential values below 0.3 V, achieving a 300% increase in anodic current compared to the unmodified SPCE in an acidic environment (pH 3.0) with phosphate buffer solution. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrode's electrochemical behavior. The electrode achieved a DP detection limit of 0.15 <i>µ</i>mol/L using linear scan voltammetry. Interference studies with ascorbic acid and uric acid confirmed the electrode's selectivity for DP detection. The sensor's effectiveness was validated using real human urine samples, demonstrating accurate and reliable performance.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Screen-Printed Carbon Electrodes Molecularly Modified with Methylphenidate Film for Electrochemical Determination of Dopamine by Linear Scan Voltammetry\",\"authors\":\"Fernando Riesco,&nbsp;Gloria A. Cosco-Salguero,&nbsp;Edgar Nagles,&nbsp;Johisner Penagos-Llanos,&nbsp;Rodrigo Segura,&nbsp;John Hurtado\",\"doi\":\"10.1002/elan.12028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of new sensors for dopamine (DP) detection is crucial due to its role as one of the most important neurotransmitters for maintaining mental health. In this context, a novel and simple 2D screen-printed carbon electrode (SPCE) molecularly modified electrode with a methylphenidate film was developed. This electrode exhibited notable activity in DP oxidation at potential values below 0.3 V, achieving a 300% increase in anodic current compared to the unmodified SPCE in an acidic environment (pH 3.0) with phosphate buffer solution. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrode's electrochemical behavior. The electrode achieved a DP detection limit of 0.15 <i>µ</i>mol/L using linear scan voltammetry. Interference studies with ascorbic acid and uric acid confirmed the electrode's selectivity for DP detection. The sensor's effectiveness was validated using real human urine samples, demonstrating accurate and reliable performance.</p>\",\"PeriodicalId\":162,\"journal\":{\"name\":\"Electroanalysis\",\"volume\":\"37 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroanalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elan.12028\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.12028","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

多巴胺是维持心理健康最重要的神经递质之一,因此开发新的多巴胺检测传感器至关重要。在此背景下,开发了一种新颖而简单的带有哌醋甲酯膜的二维丝网印刷碳电极(SPCE)分子修饰电极。该电极在电位值低于0.3 V时表现出显著的DP氧化活性,与未改性的SPCE相比,在酸性环境(pH 3.0)中,与磷酸盐缓冲溶液相比,阳极电流增加了300%。利用循环伏安法和电化学阻抗谱对电极的电化学行为进行了表征。采用线性扫描伏安法,电极的DP检出限为0.15µmol/L。与抗坏血酸和尿酸的干扰研究证实了电极对DP检测的选择性。使用真实的人类尿液样本验证了传感器的有效性,显示出准确可靠的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New Screen-Printed Carbon Electrodes Molecularly Modified with Methylphenidate Film for Electrochemical Determination of Dopamine by Linear Scan Voltammetry

New Screen-Printed Carbon Electrodes Molecularly Modified with Methylphenidate Film for Electrochemical Determination of Dopamine by Linear Scan Voltammetry

The development of new sensors for dopamine (DP) detection is crucial due to its role as one of the most important neurotransmitters for maintaining mental health. In this context, a novel and simple 2D screen-printed carbon electrode (SPCE) molecularly modified electrode with a methylphenidate film was developed. This electrode exhibited notable activity in DP oxidation at potential values below 0.3 V, achieving a 300% increase in anodic current compared to the unmodified SPCE in an acidic environment (pH 3.0) with phosphate buffer solution. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrode's electrochemical behavior. The electrode achieved a DP detection limit of 0.15 µmol/L using linear scan voltammetry. Interference studies with ascorbic acid and uric acid confirmed the electrode's selectivity for DP detection. The sensor's effectiveness was validated using real human urine samples, demonstrating accurate and reliable performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electroanalysis
Electroanalysis 化学-电化学
CiteScore
6.00
自引率
3.30%
发文量
222
审稿时长
2.4 months
期刊介绍: Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications. Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信