用原子力显微镜研究康普茶和硬苏打水对羟基磷灰石的脱矿作用

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Andy Erickson, Emily Rond, Shannen L. Cravens
{"title":"用原子力显微镜研究康普茶和硬苏打水对羟基磷灰石的脱矿作用","authors":"Andy Erickson,&nbsp;Emily Rond,&nbsp;Shannen L. Cravens","doi":"10.1049/bsb2.12088","DOIUrl":null,"url":null,"abstract":"<p>While the erosive potential of acidic beverages has been known for decades, many new and increasingly popular beverages and food fads have not been evaluated quantitatively for their dental associated risks. In this study, the authors utilise atomic force microscopy to monitor changes in the surface morphology of an enamel mimic, hydroxyapatite (HA), induced by hard seltzer and kombucha. The primary causes of enamel degradation were assessed through a combinatorial investigation probing the impact of carbonation, acid type, acid concentration, and saliva. The average surface roughness of HA discs was determined after successive demineralisation steps. The heterogeneity of the decay process was assessed using multiple spatial replicates per sample. To aid in the interpretation of the HA decay profiles, pH and titratable acidity of each beverage were also measured. The authors find that, in comparison to a reference sample of Coca-Cola®, kombucha is equally erosive after prolonged exposure while hard seltzer results in relatively minor surface damage. In addition, the presence of saliva was found to eliminate any measurable amounts of decay. Results from this study demonstrate the potential damage more recently popularised beverages can have on dental enamel and the significant dependence of oral health on the presence of saliva.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12088","citationCount":"0","resultStr":"{\"title\":\"Investigating the demineralisation of hydroxyapatite by kombucha and hard seltzer using atomic force microscopy\",\"authors\":\"Andy Erickson,&nbsp;Emily Rond,&nbsp;Shannen L. Cravens\",\"doi\":\"10.1049/bsb2.12088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While the erosive potential of acidic beverages has been known for decades, many new and increasingly popular beverages and food fads have not been evaluated quantitatively for their dental associated risks. In this study, the authors utilise atomic force microscopy to monitor changes in the surface morphology of an enamel mimic, hydroxyapatite (HA), induced by hard seltzer and kombucha. The primary causes of enamel degradation were assessed through a combinatorial investigation probing the impact of carbonation, acid type, acid concentration, and saliva. The average surface roughness of HA discs was determined after successive demineralisation steps. The heterogeneity of the decay process was assessed using multiple spatial replicates per sample. To aid in the interpretation of the HA decay profiles, pH and titratable acidity of each beverage were also measured. The authors find that, in comparison to a reference sample of Coca-Cola®, kombucha is equally erosive after prolonged exposure while hard seltzer results in relatively minor surface damage. In addition, the presence of saliva was found to eliminate any measurable amounts of decay. Results from this study demonstrate the potential damage more recently popularised beverages can have on dental enamel and the significant dependence of oral health on the presence of saliva.</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12088\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然人们几十年前就知道酸性饮料对牙齿的潜在侵蚀作用,但许多越来越受欢迎的新饮料和食品时尚并没有对它们与牙齿相关的风险进行定量评估。在这项研究中,作者利用原子力显微镜来监测硬苏打水和康普茶诱导的牙釉质模拟物羟基磷灰石(HA)表面形态的变化。通过对碳酸化、酸类型、酸浓度和唾液影响的组合调查来评估牙釉质降解的主要原因。HA圆盘的平均表面粗糙度在连续脱矿步骤后测定。利用每个样品的多个空间重复来评估衰变过程的异质性。为了帮助解释HA衰变剖面,还测量了每种饮料的pH值和可滴定酸度。作者发现,与可口可乐®的参考样品相比,康普茶在长时间暴露后同样具有腐蚀性,而硬苏打水的表面损伤相对较小。此外,发现唾液的存在可以消除任何可测量的腐烂。这项研究的结果表明,最近流行的饮料对牙釉质的潜在损害,以及口腔健康对唾液存在的重大依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the demineralisation of hydroxyapatite by kombucha and hard seltzer using atomic force microscopy

Investigating the demineralisation of hydroxyapatite by kombucha and hard seltzer using atomic force microscopy

While the erosive potential of acidic beverages has been known for decades, many new and increasingly popular beverages and food fads have not been evaluated quantitatively for their dental associated risks. In this study, the authors utilise atomic force microscopy to monitor changes in the surface morphology of an enamel mimic, hydroxyapatite (HA), induced by hard seltzer and kombucha. The primary causes of enamel degradation were assessed through a combinatorial investigation probing the impact of carbonation, acid type, acid concentration, and saliva. The average surface roughness of HA discs was determined after successive demineralisation steps. The heterogeneity of the decay process was assessed using multiple spatial replicates per sample. To aid in the interpretation of the HA decay profiles, pH and titratable acidity of each beverage were also measured. The authors find that, in comparison to a reference sample of Coca-Cola®, kombucha is equally erosive after prolonged exposure while hard seltzer results in relatively minor surface damage. In addition, the presence of saliva was found to eliminate any measurable amounts of decay. Results from this study demonstrate the potential damage more recently popularised beverages can have on dental enamel and the significant dependence of oral health on the presence of saliva.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信