TransPapCanCervix:一种基于迁移学习的增强子宫颈癌分类集成模型

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Barkha Bhavsar, Bela Shrimali
{"title":"TransPapCanCervix:一种基于迁移学习的增强子宫颈癌分类集成模型","authors":"Barkha Bhavsar,&nbsp;Bela Shrimali","doi":"10.1111/coin.70027","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cervical cancer, like many other cancers, is most treatable when detected at an early stage. Using classification methods helps find early signs of cancer and small tumors. This allows doctors to act quickly and offer treatments that might cure the cancer. This paper presents a comprehensive approach to the classification of squamous cell carcinoma (SCC) leveraging a dataset comprising 1140 single-cell images sourced from Herlev. In addition to that, in this work, a new ensemble model based on the transfer-learning (TL) technique is developed on various deep learning models, including DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50, and ResNet101 to demonstrate their efficacy in classifying diverse cellular features. To evaluate our proposed approach's performance, the ensemble approach's results are compared with some transfer learning models such as DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50, and ResNet101. The experimental results demonstrate that transfer learning-based deep neural networks combined with ensemble methods enhance the diagnostic accuracy of SCC classification systems, achieving 98% accuracy across various cell types. This further validates the effectiveness of the proposed approach. A comprehensive investigation yields a precise and efficient model for SCC classification, offering detailed insights into both normal and abnormal cell types.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TransPapCanCervix: An Enhanced Transfer Learning-Based Ensemble Model for Cervical Cancer Classification\",\"authors\":\"Barkha Bhavsar,&nbsp;Bela Shrimali\",\"doi\":\"10.1111/coin.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cervical cancer, like many other cancers, is most treatable when detected at an early stage. Using classification methods helps find early signs of cancer and small tumors. This allows doctors to act quickly and offer treatments that might cure the cancer. This paper presents a comprehensive approach to the classification of squamous cell carcinoma (SCC) leveraging a dataset comprising 1140 single-cell images sourced from Herlev. In addition to that, in this work, a new ensemble model based on the transfer-learning (TL) technique is developed on various deep learning models, including DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50, and ResNet101 to demonstrate their efficacy in classifying diverse cellular features. To evaluate our proposed approach's performance, the ensemble approach's results are compared with some transfer learning models such as DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50, and ResNet101. The experimental results demonstrate that transfer learning-based deep neural networks combined with ensemble methods enhance the diagnostic accuracy of SCC classification systems, achieving 98% accuracy across various cell types. This further validates the effectiveness of the proposed approach. A comprehensive investigation yields a precise and efficient model for SCC classification, offering detailed insights into both normal and abnormal cell types.</p>\\n </div>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70027\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70027","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

子宫颈癌和许多其他癌症一样,在早期发现是最容易治疗的。使用分类方法有助于发现癌症和小肿瘤的早期迹象。这使得医生能够迅速采取行动,并提供可能治愈癌症的治疗方法。本文提出了一种综合的鳞状细胞癌(SCC)分类方法,利用来自Herlev的1140张单细胞图像组成的数据集。除此之外,在本工作中,基于迁移学习(TL)技术的新集成模型在各种深度学习模型(包括DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50和ResNet101)上开发,以证明它们在分类不同细胞特征方面的有效性。为了评估我们提出的方法的性能,将集成方法的结果与一些迁移学习模型(如DenseNet121、DenseNet169、InceptionResNet、XceptionNet、ResNet50和ResNet101)进行了比较。实验结果表明,基于迁移学习的深度神经网络结合集成方法提高了SCC分类系统的诊断准确率,在各种细胞类型中准确率达到98%。这进一步验证了所提出方法的有效性。全面的研究产生了一个精确而有效的SCC分类模型,提供了对正常和异常细胞类型的详细见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TransPapCanCervix: An Enhanced Transfer Learning-Based Ensemble Model for Cervical Cancer Classification

Cervical cancer, like many other cancers, is most treatable when detected at an early stage. Using classification methods helps find early signs of cancer and small tumors. This allows doctors to act quickly and offer treatments that might cure the cancer. This paper presents a comprehensive approach to the classification of squamous cell carcinoma (SCC) leveraging a dataset comprising 1140 single-cell images sourced from Herlev. In addition to that, in this work, a new ensemble model based on the transfer-learning (TL) technique is developed on various deep learning models, including DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50, and ResNet101 to demonstrate their efficacy in classifying diverse cellular features. To evaluate our proposed approach's performance, the ensemble approach's results are compared with some transfer learning models such as DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50, and ResNet101. The experimental results demonstrate that transfer learning-based deep neural networks combined with ensemble methods enhance the diagnostic accuracy of SCC classification systems, achieving 98% accuracy across various cell types. This further validates the effectiveness of the proposed approach. A comprehensive investigation yields a precise and efficient model for SCC classification, offering detailed insights into both normal and abnormal cell types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信