脉冲神经网络中超低静功率线性电荷集成的补偿电流镜像神经元电路

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Jonghyuk Park, Sungjoon Kim, Woo Young Choi
{"title":"脉冲神经网络中超低静功率线性电荷集成的补偿电流镜像神经元电路","authors":"Jonghyuk Park,&nbsp;Sungjoon Kim,&nbsp;Woo Young Choi","doi":"10.1002/aisy.202570010","DOIUrl":null,"url":null,"abstract":"<p><b>Spiking Neural Networks</b>\n </p><p>In article number 2400673, Jonghyuk Park, Sungjoon Kim, and Woo Young Choi present a neuron circuit that optimizes vector-matrix multiplication performance in spiking neural networks (SNNs) while ensuring low-power consumption. This research validates the achievement of high SNN system accuracy through a CMOS neuron circuit arranged to prevent non-linear operations that occur during the integration of massive synaptic arrays and neurons.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202570010","citationCount":"0","resultStr":"{\"title\":\"Compensated Current Mirror Neuron Circuits for Linear Charge Integration with Ultralow Static Power in Spiking Neural Networks\",\"authors\":\"Jonghyuk Park,&nbsp;Sungjoon Kim,&nbsp;Woo Young Choi\",\"doi\":\"10.1002/aisy.202570010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Spiking Neural Networks</b>\\n </p><p>In article number 2400673, Jonghyuk Park, Sungjoon Kim, and Woo Young Choi present a neuron circuit that optimizes vector-matrix multiplication performance in spiking neural networks (SNNs) while ensuring low-power consumption. This research validates the achievement of high SNN system accuracy through a CMOS neuron circuit arranged to prevent non-linear operations that occur during the integration of massive synaptic arrays and neurons.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202570010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202570010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202570010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在2400673号文章中,朴钟赫、金成俊和崔禹永提出了一种神经元电路,该电路在保证低功耗的同时优化了峰值神经网络(SNNs)的向量矩阵乘法性能。本研究验证了通过CMOS神经元电路实现高SNN系统精度,以防止在大量突触阵列和神经元集成过程中发生非线性操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Compensated Current Mirror Neuron Circuits for Linear Charge Integration with Ultralow Static Power in Spiking Neural Networks

Compensated Current Mirror Neuron Circuits for Linear Charge Integration with Ultralow Static Power in Spiking Neural Networks

Spiking Neural Networks

In article number 2400673, Jonghyuk Park, Sungjoon Kim, and Woo Young Choi present a neuron circuit that optimizes vector-matrix multiplication performance in spiking neural networks (SNNs) while ensuring low-power consumption. This research validates the achievement of high SNN system accuracy through a CMOS neuron circuit arranged to prevent non-linear operations that occur during the integration of massive synaptic arrays and neurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信