IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Pietro Demattê Avona, Alvaro Penteado Crósta, Marcos Alberto Rodrigues Vasconcelos, Evan Bjonnes, Fernando Lessa Pereira, Ana Maria Góes
{"title":"Geology, gravity, and numerical modeling of the Nova Colinas impact structure, Parnaíba Basin, Brazil","authors":"Pietro Demattê Avona,&nbsp;Alvaro Penteado Crósta,&nbsp;Marcos Alberto Rodrigues Vasconcelos,&nbsp;Evan Bjonnes,&nbsp;Fernando Lessa Pereira,&nbsp;Ana Maria Góes","doi":"10.1111/maps.14306","DOIUrl":null,"url":null,"abstract":"<p>Nova Colinas, centered at 07°09′33″ S/46°06′30″ W, is the ninth confirmed complex impact structure in Brazil and the fifth in the Parnaíba Basin, with a diameter of ~6.5–7 km and a nearly circular shape. Impactites include shocked siltstones from the Pedra de Fogo Fm. found at the central peak, brecciated sandstone from the Sambaíba Fm. bearing microscopic shock features, and brecciated basalt from the Mosquito Fm. bearing shatter cones. The impact event's age has been constrained to the interval from ~130 to ~199 Ma based on the local stratigraphy. Due to its moderate to advanced stage of erosion, geophysical modeling combined with geological field data were employed for its characterization. A new geological map was produced through field observations and remote sensing image interpretation, as well as a 3-D model based on ground gravity data and numerical modeling. iSALE2D shock physics code was employed to simulate the formation of Nova Colinas crater. The results revealed its main structural zones: the central uplift, annular basin, and outer rim, each associated with specific lithostratigraphic units from the Parnaíba Basin. Bouguer residual anomalies ranged from −3.6 to 1.2 mGal, with a nearly circular positive anomaly at the center of the structure, surrounded by a negative anomaly. 3-D gravity data inversion indicated a buried high-density body, likely due to the uplift of a diabase sill. Results of the numerical modeling point out that the final crater reached gravitational stability with a diameter of ~7 km and a depth of ~240 m, suggesting that a narrow outcrop strip of the Motuca Fm. was uplifted to a higher level compared to the Sambaíba Fm. strata, forming an antiform-like “arch” that creates an inner ring that exposes rocks of the Motuca Formation.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 2","pages":"286-307"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14306","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

Nova Colinas位于南纬07°09′33″/西经46°06′30″,是巴西第九个被证实的复杂撞击结构,也是帕尔奈巴盆地的第五个,直径约为6.5-7千米,形状近似圆形。撞击岩包括位于中心山峰的福戈山地层(Pedra de Fogo Fm.)中的冲击粉砂岩、桑巴伊巴地层(Sambaíba Fm.)中带有微观冲击特征的碎屑砂岩以及蚊子地层(Mosquito Fm.)中带有碎裂锥的碎屑玄武岩。根据当地地层,撞击事件的年龄被推定为约 130 至约 199 Ma 之间。由于其侵蚀程度处于中高级阶段,因此采用了地球物理模型结合实地地质数据来确定其特征。通过实地观测和遥感图像判读绘制了新的地质图,并根据地面重力数据和数值建模建立了三维模型。研究结果揭示了火山口的主要结构区:中央隆起区、环形盆地和外缘区,每个结构区都与帕尔奈巴盆地的特定岩石地层单位有关。布格尔残余异常介于-3.6 到 1.2 mGal 之间,结构中心有一个近似圆形的正异常,周围是负异常。三维重力数据反演显示出一个埋藏的高密度岩体,很可能是由于辉绿岩山体的隆起造成的。数值建模结果表明,最终陨石坑在直径约 7 千米和深度约 240 米处达到重力稳定,这表明莫图卡地层的一条狭窄露头带被抬升到了比桑巴伊巴地层更高的位置,形成了一个类似蚁状的 "拱门",形成了一个暴露莫图卡地层岩石的内环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geology, gravity, and numerical modeling of the Nova Colinas impact structure, Parnaíba Basin, Brazil

Nova Colinas, centered at 07°09′33″ S/46°06′30″ W, is the ninth confirmed complex impact structure in Brazil and the fifth in the Parnaíba Basin, with a diameter of ~6.5–7 km and a nearly circular shape. Impactites include shocked siltstones from the Pedra de Fogo Fm. found at the central peak, brecciated sandstone from the Sambaíba Fm. bearing microscopic shock features, and brecciated basalt from the Mosquito Fm. bearing shatter cones. The impact event's age has been constrained to the interval from ~130 to ~199 Ma based on the local stratigraphy. Due to its moderate to advanced stage of erosion, geophysical modeling combined with geological field data were employed for its characterization. A new geological map was produced through field observations and remote sensing image interpretation, as well as a 3-D model based on ground gravity data and numerical modeling. iSALE2D shock physics code was employed to simulate the formation of Nova Colinas crater. The results revealed its main structural zones: the central uplift, annular basin, and outer rim, each associated with specific lithostratigraphic units from the Parnaíba Basin. Bouguer residual anomalies ranged from −3.6 to 1.2 mGal, with a nearly circular positive anomaly at the center of the structure, surrounded by a negative anomaly. 3-D gravity data inversion indicated a buried high-density body, likely due to the uplift of a diabase sill. Results of the numerical modeling point out that the final crater reached gravitational stability with a diameter of ~7 km and a depth of ~240 m, suggesting that a narrow outcrop strip of the Motuca Fm. was uplifted to a higher level compared to the Sambaíba Fm. strata, forming an antiform-like “arch” that creates an inner ring that exposes rocks of the Motuca Formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteoritics & Planetary Science
Meteoritics & Planetary Science 地学天文-地球化学与地球物理
CiteScore
3.90
自引率
31.80%
发文量
121
审稿时长
3 months
期刊介绍: First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信