Klemens Hocke, Nicholas M. Pedatella, Yosuke Yamazaki
{"title":"Nonlinear Interaction of the Lunar Tide M2 and the Diurnal Variation of Electron Density in the Ionosphere","authors":"Klemens Hocke, Nicholas M. Pedatella, Yosuke Yamazaki","doi":"10.1029/2024JA033482","DOIUrl":null,"url":null,"abstract":"<p>Ground-based observations of time series of ionospheric electron density indicated the existence of spectral components at the periods of the lunar tidal constituents <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math> (25.82 hr) and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math> (8.18 hr). It was unclear whether these variations are excited by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math> tides propagating from the surface into the ionosphere or if the variations are due to a nonlinear interaction of the semidiurnal lunar tide <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> with the diurnal variation of ionization (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math>). A simulation was performed with the NSF National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM). In the stratosphere at the lower boundary of TIME-GCM, the signal of the atmospheric semidiurnal lunar tide <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> is introduced. The TIME-GCM simulation of January–February 2009 shows that the electron density variation in the equatorial <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{F}}_{2}$</annotation>\n </semantics></math> region contains not only a spectral component of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> period but also spectral components of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math> periods fulfilling the nonlinear interaction resonance condition for the frequencies of the wave triads (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> + <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> = <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math>) and (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> − <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> = <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math>). The nonlinear interaction resonance condition of the zonal wavenumbers of these wave triads is also fulfilled. Moreover, the relevance of nonlinear interaction of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> is supported by observations of total electron content (TEC). The amplitude spectrum of the long-term time series of TEC shows that the quasi-diurnal and terdiurnal lunar spectral lines precisely occur at the frequencies of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> − <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> + <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math>.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033482","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033482","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
对电离层电子密度时间序列的地基观测表明,在月球潮汐成分 O 1 ${\mathrm{O}}_{1}$ (25.82 小时)和 MK 3 ${\text{MK}}_{3}$ (8.18 小时)的周期存在光谱成分。目前还不清楚这些变化是由从地表传播到电离层的 O 1 ${\mathrm{O}}_{1}$ 和 MK 3 ${text\{MK}}_{3}$ 潮汐引起的,还是由半日月潮 M 2 ${\mathrm{M}}_{2}$ 与电离的日变化(S 1 ${\mathrm{S}}_{1}$ )的非线性相互作用引起的。利用美国国家科学基金会国家大气研究中心的热层-电离层-大气层电动力学大气环流模式(TIME-GCM)进行了模拟。在 TIME-GCM 下边界的平流层中,引入了大气半月潮 M 2 ${{mathrm{M}}_{2}$ 的信号。The TIME-GCM simulation of January–February 2009 shows that the electron density variation in the equatorial F 2 ${\mathrm{F}}_{2}$ region contains not only a spectral component of the M 2 ${\mathrm{M}}_{2}$ period but also spectral components of the O 1 ${\mathrm{O}}_{1}$ and MK 3 ${\text{MK}}_{3}$ periods fulfilling the nonlinear interaction resonance condition for the frequencies of the wave triads ( M 2 ${\mathrm{M}}_{2}$ + S 1 ${\mathrm{S}}_{1}$ = MK 3 ${\text{MK}}_{3}$ ) and ( M 2 ${\mathrm{M}}_{2}$ − S 1 ${\mathrm{S}}_{1}$ = O 1 ${\mathrm{O}}_{1}$ ).这些波三元组的带状波数也满足非线性相互作用共振条件。
Nonlinear Interaction of the Lunar Tide M2 and the Diurnal Variation of Electron Density in the Ionosphere
Ground-based observations of time series of ionospheric electron density indicated the existence of spectral components at the periods of the lunar tidal constituents (25.82 hr) and (8.18 hr). It was unclear whether these variations are excited by and tides propagating from the surface into the ionosphere or if the variations are due to a nonlinear interaction of the semidiurnal lunar tide with the diurnal variation of ionization (). A simulation was performed with the NSF National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM). In the stratosphere at the lower boundary of TIME-GCM, the signal of the atmospheric semidiurnal lunar tide is introduced. The TIME-GCM simulation of January–February 2009 shows that the electron density variation in the equatorial region contains not only a spectral component of the period but also spectral components of the and periods fulfilling the nonlinear interaction resonance condition for the frequencies of the wave triads ( + = ) and ( − = ). The nonlinear interaction resonance condition of the zonal wavenumbers of these wave triads is also fulfilled. Moreover, the relevance of nonlinear interaction of and is supported by observations of total electron content (TEC). The amplitude spectrum of the long-term time series of TEC shows that the quasi-diurnal and terdiurnal lunar spectral lines precisely occur at the frequencies of − and + .