{"title":"用于异常检测的量子相似性学习","authors":"A. Hammad, Mihoko M. Nojiri, Masahito Yamazaki","doi":"10.1007/JHEP02(2025)081","DOIUrl":null,"url":null,"abstract":"<p>Anomaly detection is a vital technique for exploring signatures of new physics Beyond the Standard Model (BSM) at the Large Hadron Collider (LHC). The vast number of collisions generated by the LHC demands sophisticated deep learning techniques. Similarity learning, a self-supervised machine learning, detects anomalous signals by estimating their similarity to background events. In this paper, we explore the potential of quantum computers for anomaly detection through similarity learning, leveraging the power of quantum computing to enhance the known similarity learning method. In the realm of noisy intermediate-scale quantum (NISQ) devices, we employ a hybrid classical-quantum network to search for heavy scalar resonances in the di-Higgs production channel. In the absence of quantum noise, the hybrid network demonstrates improvement over the known similarity learning method. Moreover, we employ a clustering algorithm to reduce measurement noise from limited shot counts, resulting in 9% improvement in the hybrid network performance. Our analysis highlights the applicability of quantum algorithms for LHC data analysis, where improvements are anticipated with the advent of fault-tolerant quantum computers.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)081.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum similarity learning for anomaly detection\",\"authors\":\"A. Hammad, Mihoko M. Nojiri, Masahito Yamazaki\",\"doi\":\"10.1007/JHEP02(2025)081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anomaly detection is a vital technique for exploring signatures of new physics Beyond the Standard Model (BSM) at the Large Hadron Collider (LHC). The vast number of collisions generated by the LHC demands sophisticated deep learning techniques. Similarity learning, a self-supervised machine learning, detects anomalous signals by estimating their similarity to background events. In this paper, we explore the potential of quantum computers for anomaly detection through similarity learning, leveraging the power of quantum computing to enhance the known similarity learning method. In the realm of noisy intermediate-scale quantum (NISQ) devices, we employ a hybrid classical-quantum network to search for heavy scalar resonances in the di-Higgs production channel. In the absence of quantum noise, the hybrid network demonstrates improvement over the known similarity learning method. Moreover, we employ a clustering algorithm to reduce measurement noise from limited shot counts, resulting in 9% improvement in the hybrid network performance. Our analysis highlights the applicability of quantum algorithms for LHC data analysis, where improvements are anticipated with the advent of fault-tolerant quantum computers.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 2\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)081.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP02(2025)081\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)081","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Anomaly detection is a vital technique for exploring signatures of new physics Beyond the Standard Model (BSM) at the Large Hadron Collider (LHC). The vast number of collisions generated by the LHC demands sophisticated deep learning techniques. Similarity learning, a self-supervised machine learning, detects anomalous signals by estimating their similarity to background events. In this paper, we explore the potential of quantum computers for anomaly detection through similarity learning, leveraging the power of quantum computing to enhance the known similarity learning method. In the realm of noisy intermediate-scale quantum (NISQ) devices, we employ a hybrid classical-quantum network to search for heavy scalar resonances in the di-Higgs production channel. In the absence of quantum noise, the hybrid network demonstrates improvement over the known similarity learning method. Moreover, we employ a clustering algorithm to reduce measurement noise from limited shot counts, resulting in 9% improvement in the hybrid network performance. Our analysis highlights the applicability of quantum algorithms for LHC data analysis, where improvements are anticipated with the advent of fault-tolerant quantum computers.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).