Al2O3-DI水纳米流体闭环脉动热管热参数预测与数据分析的实验研究与机器学习方法

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Kamlesh Parmar, Nirmal Parmar, Ajit Kumar Parwani, Sumit Tripathi
{"title":"Al2O3-DI水纳米流体闭环脉动热管热参数预测与数据分析的实验研究与机器学习方法","authors":"Kamlesh Parmar,&nbsp;Nirmal Parmar,&nbsp;Ajit Kumar Parwani,&nbsp;Sumit Tripathi","doi":"10.1007/s10973-024-13859-1","DOIUrl":null,"url":null,"abstract":"<div><p>A closed-loop pulsating heat pipe (CLPHP) can provide effective and adaptable thermal solutions for various applications. This work presents extensive experimental studies on CLPHP to enhance thermal performance using nanofluid. The experimental studies are conducted using two different heat transfer fluids: deionized (DI) water and a nanofluid (Al<sub>2</sub>O<sub>3</sub>-DI water with 0.1 mass/% nanoparticles). Parametric studies are performed with different combinations of filling ratios (FR) and heat input values. To analyze the experimental data, an in-house Python library named PyPulseHeatPipe is developed, which facilitates statistical analysis, data visualization, and process data for machine learning from raw experimental data. Furthermore, the experimental datasets are used to train various machine learning (ML) models, including random forest regressor (RFR), extreme gradient boosting regressor, gradient boosting regressor, support vector machine, and K-nearest neighbors (KNN) to determine the thermal parameters for a given CLPHP. These models precisely predict the thermal performance of CLPHP using two novel approaches. The first approach predicts thermal resistance under given thermal properties such as evaporator temperature, pressure, FR, heat input, and heat transfer fluid, while the second approach predicts thermal parameters such as evaporator temperature, pressure, and heat input to achieve the desired thermal resistance. For the first approach, the RFR model performs the best among the trained ML models, with the lowest root mean square error (RMSE) of 0.0175 and the highest goodness of fit, with <i>R</i><sup>2</sup> score and <i>R</i><sup>2</sup>-adjusted (<i>R</i><sup>2</sup>-adj.) of 0.9873 and 0.9872, respectively. For the second approach, the KNN model achieves the highest goodness of fit (<i>R</i><sup>2</sup>-adj.) for evaporator temperature, pressure, and heat input values of around 0.9889, 0.9524, and 0.8149, respectively. This study establishes a foundation for the more efficient thermal design of CLPHP in various engineering systems by integrating experimental research with data-driven solutions through ML.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"591 - 606"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental studies and machine learning approaches for thermal parameters prediction and data analysis in closed-loop pulsating heat pipes with Al2O3-DI water nanofluid\",\"authors\":\"Kamlesh Parmar,&nbsp;Nirmal Parmar,&nbsp;Ajit Kumar Parwani,&nbsp;Sumit Tripathi\",\"doi\":\"10.1007/s10973-024-13859-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A closed-loop pulsating heat pipe (CLPHP) can provide effective and adaptable thermal solutions for various applications. This work presents extensive experimental studies on CLPHP to enhance thermal performance using nanofluid. The experimental studies are conducted using two different heat transfer fluids: deionized (DI) water and a nanofluid (Al<sub>2</sub>O<sub>3</sub>-DI water with 0.1 mass/% nanoparticles). Parametric studies are performed with different combinations of filling ratios (FR) and heat input values. To analyze the experimental data, an in-house Python library named PyPulseHeatPipe is developed, which facilitates statistical analysis, data visualization, and process data for machine learning from raw experimental data. Furthermore, the experimental datasets are used to train various machine learning (ML) models, including random forest regressor (RFR), extreme gradient boosting regressor, gradient boosting regressor, support vector machine, and K-nearest neighbors (KNN) to determine the thermal parameters for a given CLPHP. These models precisely predict the thermal performance of CLPHP using two novel approaches. The first approach predicts thermal resistance under given thermal properties such as evaporator temperature, pressure, FR, heat input, and heat transfer fluid, while the second approach predicts thermal parameters such as evaporator temperature, pressure, and heat input to achieve the desired thermal resistance. For the first approach, the RFR model performs the best among the trained ML models, with the lowest root mean square error (RMSE) of 0.0175 and the highest goodness of fit, with <i>R</i><sup>2</sup> score and <i>R</i><sup>2</sup>-adjusted (<i>R</i><sup>2</sup>-adj.) of 0.9873 and 0.9872, respectively. For the second approach, the KNN model achieves the highest goodness of fit (<i>R</i><sup>2</sup>-adj.) for evaporator temperature, pressure, and heat input values of around 0.9889, 0.9524, and 0.8149, respectively. This study establishes a foundation for the more efficient thermal design of CLPHP in various engineering systems by integrating experimental research with data-driven solutions through ML.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"150 1\",\"pages\":\"591 - 606\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13859-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13859-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

闭环脉动热管(CLPHP)可以为各种应用提供有效的、适应性强的热解决方案。这项工作提出了广泛的实验研究CLPHP提高热性能使用纳米流体。实验研究使用了两种不同的传热流体:去离子水和纳米流体(含0.1质量/%纳米颗粒的Al2O3-DI水)。参数化研究采用不同的填充比(FR)和热输入值组合进行。为了分析实验数据,我们开发了一个名为PyPulseHeatPipe的内部Python库,它有助于从原始实验数据中进行统计分析、数据可视化和处理数据,以便机器学习。此外,实验数据集用于训练各种机器学习(ML)模型,包括随机森林回归器(RFR)、极端梯度增强回归器、梯度增强回归器、支持向量机和k近邻(KNN),以确定给定CLPHP的热参数。这些模型使用两种新颖的方法精确地预测了CLPHP的热性能。第一种方法预测给定热性能下的热阻,如蒸发器温度、压力、FR、热输入和传热流体,而第二种方法预测热参数,如蒸发器温度、压力和热输入,以实现所需的热阻。对于第一种方法,RFR模型在训练的ML模型中表现最好,其均方根误差(RMSE)最低为0.0175,拟合优度最高,R2评分和R2校正(R2-adj.)分别为0.9873和0.9872。对于第二种方法,KNN模型在蒸发器温度、压力和热量输入值分别约为0.9889、0.9524和0.8149时获得了最高的拟合优度(R2-adj.)。本研究通过ML将实验研究与数据驱动解决方案相结合,为CLPHP在各种工程系统中更高效的热设计奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental studies and machine learning approaches for thermal parameters prediction and data analysis in closed-loop pulsating heat pipes with Al2O3-DI water nanofluid

A closed-loop pulsating heat pipe (CLPHP) can provide effective and adaptable thermal solutions for various applications. This work presents extensive experimental studies on CLPHP to enhance thermal performance using nanofluid. The experimental studies are conducted using two different heat transfer fluids: deionized (DI) water and a nanofluid (Al2O3-DI water with 0.1 mass/% nanoparticles). Parametric studies are performed with different combinations of filling ratios (FR) and heat input values. To analyze the experimental data, an in-house Python library named PyPulseHeatPipe is developed, which facilitates statistical analysis, data visualization, and process data for machine learning from raw experimental data. Furthermore, the experimental datasets are used to train various machine learning (ML) models, including random forest regressor (RFR), extreme gradient boosting regressor, gradient boosting regressor, support vector machine, and K-nearest neighbors (KNN) to determine the thermal parameters for a given CLPHP. These models precisely predict the thermal performance of CLPHP using two novel approaches. The first approach predicts thermal resistance under given thermal properties such as evaporator temperature, pressure, FR, heat input, and heat transfer fluid, while the second approach predicts thermal parameters such as evaporator temperature, pressure, and heat input to achieve the desired thermal resistance. For the first approach, the RFR model performs the best among the trained ML models, with the lowest root mean square error (RMSE) of 0.0175 and the highest goodness of fit, with R2 score and R2-adjusted (R2-adj.) of 0.9873 and 0.9872, respectively. For the second approach, the KNN model achieves the highest goodness of fit (R2-adj.) for evaporator temperature, pressure, and heat input values of around 0.9889, 0.9524, and 0.8149, respectively. This study establishes a foundation for the more efficient thermal design of CLPHP in various engineering systems by integrating experimental research with data-driven solutions through ML.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信