Boger纳米流体通过多孔盘时粘度和导热系数的影响:有限差分分析

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Qadeer Raza, Xiaodong Wang, Bagh Ali
{"title":"Boger纳米流体通过多孔盘时粘度和导热系数的影响:有限差分分析","authors":"Qadeer Raza,&nbsp;Xiaodong Wang,&nbsp;Bagh Ali","doi":"10.1007/s10973-024-13746-9","DOIUrl":null,"url":null,"abstract":"<div><p>A constructed design-based model is employed to analyze the multiple enhancements in viscosity and thermal conductivity within a porous disk filled with Ag-water nanofluid. For the first time, we are applying the concept of utilizing diverse thermophysical properties, including viscosity and thermal conductivity impediments, to analyze entropy generation within a system. The energy equation incorporates a binary chemical reaction and Arrhenius activation energy. We utilize a system of nonlinear partial differential equations to establish the mathematical framework governing the flow. This is subsequently transformed into a nondimensional partial differential form via dimensionless variables. Numerical investigations employ a finite difference scheme, exploring diverse values of the related physical parameters. A finite difference scheme implemented in MATLAB is used to obtain numerical and graphical results, highlighting the impact of various parameters on the 2D and 3D profiles of velocity, temperature, concentration, entropy generation, skin friction coefficient, and Nusselt number for different non-dimensional parameters. The obtained output shows that boosting the values solvent fraction factor <span>\\((\\beta _1)\\)</span> and relaxation time ratio <span>\\((\\beta _2)\\)</span> enhances the velocity profile of NS&amp;LVPC nanofluid in momentum boundary layer thickness on both porous disk, outperforming S&amp;EVPC and NS&amp;VPC configurations. Raising the temperature difference (<span>\\(\\gamma _{*}\\)</span>) and activation energy (E) reduces the heat and mass transfer in the nanofluid flow over a lower porous disk. Higher values of Eckert number (Ec), magnetic parameters (M), thermal radiation (Rd), and concentration ratio parameter <span>\\((T_\\text{c})\\)</span> result in increased entropy generation profiles in both porous disks. As the volume fraction increases, the heat transfer rate exhibits an inverse trend in the Nusselt number for both porous disks. However, the nanolayer thermal conductivity <span>\\((Nu_3)\\)</span> performs much better than spherical <span>\\((Nu_1)\\)</span> and non-spherical thermal conductivity <span>\\((Nu_2)\\)</span>. Our findings indicate that flow performance is significantly better with nanolayer thermal conductivity and low viscosity particle concentration (NS&amp;LVPC) compared to spherical thermal conductivity with effective viscosity particle concentration (S&amp;EVPC) and nonspherical thermal conductivity with low viscosity particle concentration (NS&amp;VPC).</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"451 - 477"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Viscosity and Thermal Conductivity in Boger Nanofluid Flow through Porous Disk: Finite Difference Analysis\",\"authors\":\"Qadeer Raza,&nbsp;Xiaodong Wang,&nbsp;Bagh Ali\",\"doi\":\"10.1007/s10973-024-13746-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A constructed design-based model is employed to analyze the multiple enhancements in viscosity and thermal conductivity within a porous disk filled with Ag-water nanofluid. For the first time, we are applying the concept of utilizing diverse thermophysical properties, including viscosity and thermal conductivity impediments, to analyze entropy generation within a system. The energy equation incorporates a binary chemical reaction and Arrhenius activation energy. We utilize a system of nonlinear partial differential equations to establish the mathematical framework governing the flow. This is subsequently transformed into a nondimensional partial differential form via dimensionless variables. Numerical investigations employ a finite difference scheme, exploring diverse values of the related physical parameters. A finite difference scheme implemented in MATLAB is used to obtain numerical and graphical results, highlighting the impact of various parameters on the 2D and 3D profiles of velocity, temperature, concentration, entropy generation, skin friction coefficient, and Nusselt number for different non-dimensional parameters. The obtained output shows that boosting the values solvent fraction factor <span>\\\\((\\\\beta _1)\\\\)</span> and relaxation time ratio <span>\\\\((\\\\beta _2)\\\\)</span> enhances the velocity profile of NS&amp;LVPC nanofluid in momentum boundary layer thickness on both porous disk, outperforming S&amp;EVPC and NS&amp;VPC configurations. Raising the temperature difference (<span>\\\\(\\\\gamma _{*}\\\\)</span>) and activation energy (E) reduces the heat and mass transfer in the nanofluid flow over a lower porous disk. Higher values of Eckert number (Ec), magnetic parameters (M), thermal radiation (Rd), and concentration ratio parameter <span>\\\\((T_\\\\text{c})\\\\)</span> result in increased entropy generation profiles in both porous disks. As the volume fraction increases, the heat transfer rate exhibits an inverse trend in the Nusselt number for both porous disks. However, the nanolayer thermal conductivity <span>\\\\((Nu_3)\\\\)</span> performs much better than spherical <span>\\\\((Nu_1)\\\\)</span> and non-spherical thermal conductivity <span>\\\\((Nu_2)\\\\)</span>. Our findings indicate that flow performance is significantly better with nanolayer thermal conductivity and low viscosity particle concentration (NS&amp;LVPC) compared to spherical thermal conductivity with effective viscosity particle concentration (S&amp;EVPC) and nonspherical thermal conductivity with low viscosity particle concentration (NS&amp;VPC).</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"150 1\",\"pages\":\"451 - 477\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13746-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13746-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

建立了基于设计的模型,分析了银水纳米流体填充的多孔圆盘内粘度和导热系数的多重增强。我们第一次应用了利用各种热物理性质的概念,包括粘度和导热障碍,来分析系统内的熵生成。能量方程包含二元化学反应和阿伦尼乌斯活化能。我们利用一个非线性偏微分方程组来建立控制流动的数学框架。随后通过无量纲变量将其转化为无量纲偏微分形式。数值研究采用有限差分格式,探索相关物理参数的不同值。利用MATLAB实现的有限差分格式获得数值和图形结果,突出了不同参数对不同无维参数下速度、温度、浓度、熵产、表面摩擦系数和努塞尔数的二维和三维分布的影响。所得结果表明,提高溶剂分数因子\((\beta _1)\)和松弛时间比\((\beta _2)\)的值可以增强NS&amp;LVPC纳米流体在两种多孔盘动量边界层厚度上的速度分布,优于NS&amp; EVPC和NS&amp;VPC配置。提高温度差(\(\gamma _{*}\))和活化能(E)可以减少纳米流体在低孔盘面上的传热传质。较高的Eckert数(Ec)、磁性参数(M)、热辐射(Rd)和浓度比参数\((T_\text{c})\)值导致两个多孔盘的熵生成曲线增大。随着体积分数的增加,两种多孔板的换热率在努塞尔数上呈反比趋势。然而,纳米层的导热性\((Nu_3)\)比球形\((Nu_1)\)和非球形导热性\((Nu_2)\)要好得多。研究结果表明,纳米层导热系数和低黏度颗粒浓度(NS&amp;LVPC)的流动性能明显优于有效黏度颗粒浓度的球形导热系数(S&amp;EVPC)和低黏度颗粒浓度的非球形导热系数(NS&amp;VPC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Viscosity and Thermal Conductivity in Boger Nanofluid Flow through Porous Disk: Finite Difference Analysis

A constructed design-based model is employed to analyze the multiple enhancements in viscosity and thermal conductivity within a porous disk filled with Ag-water nanofluid. For the first time, we are applying the concept of utilizing diverse thermophysical properties, including viscosity and thermal conductivity impediments, to analyze entropy generation within a system. The energy equation incorporates a binary chemical reaction and Arrhenius activation energy. We utilize a system of nonlinear partial differential equations to establish the mathematical framework governing the flow. This is subsequently transformed into a nondimensional partial differential form via dimensionless variables. Numerical investigations employ a finite difference scheme, exploring diverse values of the related physical parameters. A finite difference scheme implemented in MATLAB is used to obtain numerical and graphical results, highlighting the impact of various parameters on the 2D and 3D profiles of velocity, temperature, concentration, entropy generation, skin friction coefficient, and Nusselt number for different non-dimensional parameters. The obtained output shows that boosting the values solvent fraction factor \((\beta _1)\) and relaxation time ratio \((\beta _2)\) enhances the velocity profile of NS&LVPC nanofluid in momentum boundary layer thickness on both porous disk, outperforming S&EVPC and NS&VPC configurations. Raising the temperature difference (\(\gamma _{*}\)) and activation energy (E) reduces the heat and mass transfer in the nanofluid flow over a lower porous disk. Higher values of Eckert number (Ec), magnetic parameters (M), thermal radiation (Rd), and concentration ratio parameter \((T_\text{c})\) result in increased entropy generation profiles in both porous disks. As the volume fraction increases, the heat transfer rate exhibits an inverse trend in the Nusselt number for both porous disks. However, the nanolayer thermal conductivity \((Nu_3)\) performs much better than spherical \((Nu_1)\) and non-spherical thermal conductivity \((Nu_2)\). Our findings indicate that flow performance is significantly better with nanolayer thermal conductivity and low viscosity particle concentration (NS&LVPC) compared to spherical thermal conductivity with effective viscosity particle concentration (S&EVPC) and nonspherical thermal conductivity with low viscosity particle concentration (NS&VPC).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信