Yang Liu, Huinan Wang, Tiancheng Lv, Lishuang Hu, Kaili Liang, Yan Li, Jianren Zhang, Yuheng Wu, Shuangqi Hu
{"title":"DAP-4@LLM-105 微纳核壳结构的制备与性能","authors":"Yang Liu, Huinan Wang, Tiancheng Lv, Lishuang Hu, Kaili Liang, Yan Li, Jianren Zhang, Yuheng Wu, Shuangqi Hu","doi":"10.1007/s10973-024-13923-w","DOIUrl":null,"url":null,"abstract":"<div><p>The fluororubber F2314 served as the binder; while, nano-LLM-105 acted as the insensitive agent. The DAP-4@LLM-105 energetic composites were prepared by coating with different contents of nanoscale LLM-105 using the solvent evaporation method to improve the safety performance of DAP-4. The morphologies, structures, and thermal properties of the DAP-4@LLM-105 energetic composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), respectively. Additionally, the sensitivities were tested and analyzed. The combustion performance was also evaluated. The results show that the crystal structures of DAP-4 remain unchanged. When the content of LLM-105 is 20% by mass, the surface of DAP-4 can be uniformly and densely coated. Nanoscale LLM-105 could promote the thermal decomposition of DAP-4. The amount of nano-LLM-105 significantly influences the impact sensitivity and electrostatic sensitivity of DAP-4. As the content of nano-LLM-105 increases, the sensitivity of the DAP-4@LLM-105 micro-nano core–shell structures progressively decreases. Furthermore, the combustion time of the micro-nano core–shell structure is extended.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"87 - 95"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and properties of DAP-4@LLM-105 micro-nano core–shell structures\",\"authors\":\"Yang Liu, Huinan Wang, Tiancheng Lv, Lishuang Hu, Kaili Liang, Yan Li, Jianren Zhang, Yuheng Wu, Shuangqi Hu\",\"doi\":\"10.1007/s10973-024-13923-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fluororubber F2314 served as the binder; while, nano-LLM-105 acted as the insensitive agent. The DAP-4@LLM-105 energetic composites were prepared by coating with different contents of nanoscale LLM-105 using the solvent evaporation method to improve the safety performance of DAP-4. The morphologies, structures, and thermal properties of the DAP-4@LLM-105 energetic composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), respectively. Additionally, the sensitivities were tested and analyzed. The combustion performance was also evaluated. The results show that the crystal structures of DAP-4 remain unchanged. When the content of LLM-105 is 20% by mass, the surface of DAP-4 can be uniformly and densely coated. Nanoscale LLM-105 could promote the thermal decomposition of DAP-4. The amount of nano-LLM-105 significantly influences the impact sensitivity and electrostatic sensitivity of DAP-4. As the content of nano-LLM-105 increases, the sensitivity of the DAP-4@LLM-105 micro-nano core–shell structures progressively decreases. Furthermore, the combustion time of the micro-nano core–shell structure is extended.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"150 1\",\"pages\":\"87 - 95\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13923-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13923-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Preparation and properties of DAP-4@LLM-105 micro-nano core–shell structures
The fluororubber F2314 served as the binder; while, nano-LLM-105 acted as the insensitive agent. The DAP-4@LLM-105 energetic composites were prepared by coating with different contents of nanoscale LLM-105 using the solvent evaporation method to improve the safety performance of DAP-4. The morphologies, structures, and thermal properties of the DAP-4@LLM-105 energetic composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), respectively. Additionally, the sensitivities were tested and analyzed. The combustion performance was also evaluated. The results show that the crystal structures of DAP-4 remain unchanged. When the content of LLM-105 is 20% by mass, the surface of DAP-4 can be uniformly and densely coated. Nanoscale LLM-105 could promote the thermal decomposition of DAP-4. The amount of nano-LLM-105 significantly influences the impact sensitivity and electrostatic sensitivity of DAP-4. As the content of nano-LLM-105 increases, the sensitivity of the DAP-4@LLM-105 micro-nano core–shell structures progressively decreases. Furthermore, the combustion time of the micro-nano core–shell structure is extended.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.