绝对连续随机变量局部维估计的密度诱导变化

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Paul Platzer, Bertrand Chapron
{"title":"绝对连续随机变量局部维估计的密度诱导变化","authors":"Paul Platzer,&nbsp;Bertrand Chapron","doi":"10.1007/s10955-025-03416-x","DOIUrl":null,"url":null,"abstract":"<div><p>For any multi-fractal dynamical system, a precise estimate of the local dimension is essential to infer variations in its number of degrees of freedom. Following extreme value theory, a local dimension may be estimated from the distributions of pairwise distances within the dataset. For absolutely continuous random variables and in the absence of zeros and singularities, the theoretical value of this local dimension is constant and equals the phase-space dimension. However, due to uneven sampling across the dataset, practical estimations of the local dimension may diverge from this theoretical value, depending on both the phase-space dimension and the position at which the dimension is estimated. To explore such variations of the estimated local dimension of absolutely continuous random variables, approximate analytical expressions are derived and further assessed in numerical experiments. These variations are expressed as a function of 1. the random variables’ probability density function, 2. the threshold used to compute the local dimension, and 3. the phase-space dimension. Largest deviations are anticipated when the probability density function has a low absolute value, and a high absolute value of its Laplacian. Numerical simulations of random variables of dimension 1 to 30 allow to assess the validity of the approximate analytical expressions. These effects may become important for systems of moderately-high dimension and in case of limited-size datasets. We suggest to take into account this source of local variation of dimension estimates in future studies of empirical data. Implications for weather regimes are discussed.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03416-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Density-Induced Variations of Local Dimension Estimates for Absolutely Continuous Random Variables\",\"authors\":\"Paul Platzer,&nbsp;Bertrand Chapron\",\"doi\":\"10.1007/s10955-025-03416-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For any multi-fractal dynamical system, a precise estimate of the local dimension is essential to infer variations in its number of degrees of freedom. Following extreme value theory, a local dimension may be estimated from the distributions of pairwise distances within the dataset. For absolutely continuous random variables and in the absence of zeros and singularities, the theoretical value of this local dimension is constant and equals the phase-space dimension. However, due to uneven sampling across the dataset, practical estimations of the local dimension may diverge from this theoretical value, depending on both the phase-space dimension and the position at which the dimension is estimated. To explore such variations of the estimated local dimension of absolutely continuous random variables, approximate analytical expressions are derived and further assessed in numerical experiments. These variations are expressed as a function of 1. the random variables’ probability density function, 2. the threshold used to compute the local dimension, and 3. the phase-space dimension. Largest deviations are anticipated when the probability density function has a low absolute value, and a high absolute value of its Laplacian. Numerical simulations of random variables of dimension 1 to 30 allow to assess the validity of the approximate analytical expressions. These effects may become important for systems of moderately-high dimension and in case of limited-size datasets. We suggest to take into account this source of local variation of dimension estimates in future studies of empirical data. Implications for weather regimes are discussed.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10955-025-03416-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03416-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03416-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于任何多重分形动力系统,精确估计局部维数是推断其自由度数变化的必要条件。根据极值理论,可以从数据集中的成对距离分布估计局部维数。对于绝对连续的随机变量,在没有零点和奇点的情况下,这个局部维数的理论值是恒定的,等于相空间维数。然而,由于整个数据集的采样不均匀,局部维数的实际估计可能会偏离这个理论值,这取决于相空间维数和估计维数的位置。为了探索绝对连续随机变量估计局部维数的这种变化,推导了近似解析表达式,并在数值实验中进一步进行了评估。这些变化被表示为1的函数。随机变量的概率密度函数,2。用于计算局部维数的阈值;相空间维数。当概率密度函数的绝对值较低,而其拉普拉斯函数的绝对值较高时,预期偏差最大。1至30维随机变量的数值模拟可以评估近似解析表达式的有效性。这些影响对于中等高维的系统和有限大小的数据集可能变得重要。我们建议在未来的经验数据研究中考虑到这一局部变化的来源。讨论了对天气状况的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density-Induced Variations of Local Dimension Estimates for Absolutely Continuous Random Variables

For any multi-fractal dynamical system, a precise estimate of the local dimension is essential to infer variations in its number of degrees of freedom. Following extreme value theory, a local dimension may be estimated from the distributions of pairwise distances within the dataset. For absolutely continuous random variables and in the absence of zeros and singularities, the theoretical value of this local dimension is constant and equals the phase-space dimension. However, due to uneven sampling across the dataset, practical estimations of the local dimension may diverge from this theoretical value, depending on both the phase-space dimension and the position at which the dimension is estimated. To explore such variations of the estimated local dimension of absolutely continuous random variables, approximate analytical expressions are derived and further assessed in numerical experiments. These variations are expressed as a function of 1. the random variables’ probability density function, 2. the threshold used to compute the local dimension, and 3. the phase-space dimension. Largest deviations are anticipated when the probability density function has a low absolute value, and a high absolute value of its Laplacian. Numerical simulations of random variables of dimension 1 to 30 allow to assess the validity of the approximate analytical expressions. These effects may become important for systems of moderately-high dimension and in case of limited-size datasets. We suggest to take into account this source of local variation of dimension estimates in future studies of empirical data. Implications for weather regimes are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信