基于响应面法的MWCNT/水纳米流体热导率建模与优化

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Faisal Masood, Mohammad Azad Alam, Nursyarizal Bin Mohd Nor, Kashif Irshad, Irraivan Elamvazuthi, Shafiqur Rehman, Javed Akhter, Mohamed E. Zayed
{"title":"基于响应面法的MWCNT/水纳米流体热导率建模与优化","authors":"Faisal Masood,&nbsp;Mohammad Azad Alam,&nbsp;Nursyarizal Bin Mohd Nor,&nbsp;Kashif Irshad,&nbsp;Irraivan Elamvazuthi,&nbsp;Shafiqur Rehman,&nbsp;Javed Akhter,&nbsp;Mohamed E. Zayed","doi":"10.1007/s10973-024-13847-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reports on the experimental examination and optimization of a response surface methodology (RSM)-based predictive model for the thermal conductivity of aqueous multi-walled carbon nanotube (MWCNT)-based nanofluids for heat transfer applications. The design matrix was created with nanofluid temperature (°C) and nanoparticle concentration (mass/%) as independent variables, while thermal conductivity was considered as a response variable. Magnetic stirring and ultrasonication were used to produce nanofluid samples. The thermal conductivity of the prepared samples was measured, and quadratic models were selected through regression analysis. ANOVA was performed to validate the models. The maximum thermal conductivity value, i.e., 0.988 W m<sup>−1</sup> K<sup>−1</sup>, was achieved at MWCNT particle content 0.5 mass/% and 60 °C temperature. A comprehensive optimization study was also performed for maximizing thermal conductivity. The optimal values for the thermal conductivity of nanofluids were found to be 0.8845 W m<sup>−1</sup> K<sup>−1</sup>, whereas the optimal values for the control factors, i.e., nanofluid temperature and nanoparticles' concentration, were estimated to be 60 °C and 0.5 mass/%, respectively. The coefficient of determination <i>R</i><sup>2</sup> for the thermal conductivity of the developed model was found to be 0.9866, which confirmed the suitability of the developed models. The optimized MWCNT/water nanofluid shows potential as an effective heat transfer fluid, particularly for solar thermal and hybrid photovoltaic/thermal applications.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"573 - 584"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and optimization of thermal conductivity of synthesized MWCNT/water nanofluids using response surface methodology for heat transfer applications\",\"authors\":\"Faisal Masood,&nbsp;Mohammad Azad Alam,&nbsp;Nursyarizal Bin Mohd Nor,&nbsp;Kashif Irshad,&nbsp;Irraivan Elamvazuthi,&nbsp;Shafiqur Rehman,&nbsp;Javed Akhter,&nbsp;Mohamed E. Zayed\",\"doi\":\"10.1007/s10973-024-13847-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper reports on the experimental examination and optimization of a response surface methodology (RSM)-based predictive model for the thermal conductivity of aqueous multi-walled carbon nanotube (MWCNT)-based nanofluids for heat transfer applications. The design matrix was created with nanofluid temperature (°C) and nanoparticle concentration (mass/%) as independent variables, while thermal conductivity was considered as a response variable. Magnetic stirring and ultrasonication were used to produce nanofluid samples. The thermal conductivity of the prepared samples was measured, and quadratic models were selected through regression analysis. ANOVA was performed to validate the models. The maximum thermal conductivity value, i.e., 0.988 W m<sup>−1</sup> K<sup>−1</sup>, was achieved at MWCNT particle content 0.5 mass/% and 60 °C temperature. A comprehensive optimization study was also performed for maximizing thermal conductivity. The optimal values for the thermal conductivity of nanofluids were found to be 0.8845 W m<sup>−1</sup> K<sup>−1</sup>, whereas the optimal values for the control factors, i.e., nanofluid temperature and nanoparticles' concentration, were estimated to be 60 °C and 0.5 mass/%, respectively. The coefficient of determination <i>R</i><sup>2</sup> for the thermal conductivity of the developed model was found to be 0.9866, which confirmed the suitability of the developed models. The optimized MWCNT/water nanofluid shows potential as an effective heat transfer fluid, particularly for solar thermal and hybrid photovoltaic/thermal applications.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"150 1\",\"pages\":\"573 - 584\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13847-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13847-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了基于响应面法(RSM)的水相多壁碳纳米管(MWCNT)纳米流体导热率预测模型的实验检验和优化。设计矩阵以纳米流体温度(°C)和纳米颗粒浓度(质量/%)为自变量,导热系数作为响应变量。采用磁力搅拌和超声技术制备纳米流体样品。对制备的样品的导热系数进行了测量,并通过回归分析选择了二次模型。采用方差分析对模型进行验证。当MWCNT颗粒含量为0.5质量/%,温度为60℃时,其导热系数最大,为0.988 W m−1 K−1。同时进行了导热系数最大化的综合优化研究。纳米流体导热系数的最佳值为0.8845 W m−1 K−1,而控制因素(即纳米流体温度和纳米颗粒浓度)的最佳值分别为60°C和0.5质量/%。所建模型的导热系数决定系数R2为0.9866,证实了所建模型的适用性。优化后的MWCNT/水纳米流体显示出作为有效传热流体的潜力,特别是在太阳能热和光伏/热混合应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and optimization of thermal conductivity of synthesized MWCNT/water nanofluids using response surface methodology for heat transfer applications

This paper reports on the experimental examination and optimization of a response surface methodology (RSM)-based predictive model for the thermal conductivity of aqueous multi-walled carbon nanotube (MWCNT)-based nanofluids for heat transfer applications. The design matrix was created with nanofluid temperature (°C) and nanoparticle concentration (mass/%) as independent variables, while thermal conductivity was considered as a response variable. Magnetic stirring and ultrasonication were used to produce nanofluid samples. The thermal conductivity of the prepared samples was measured, and quadratic models were selected through regression analysis. ANOVA was performed to validate the models. The maximum thermal conductivity value, i.e., 0.988 W m−1 K−1, was achieved at MWCNT particle content 0.5 mass/% and 60 °C temperature. A comprehensive optimization study was also performed for maximizing thermal conductivity. The optimal values for the thermal conductivity of nanofluids were found to be 0.8845 W m−1 K−1, whereas the optimal values for the control factors, i.e., nanofluid temperature and nanoparticles' concentration, were estimated to be 60 °C and 0.5 mass/%, respectively. The coefficient of determination R2 for the thermal conductivity of the developed model was found to be 0.9866, which confirmed the suitability of the developed models. The optimized MWCNT/water nanofluid shows potential as an effective heat transfer fluid, particularly for solar thermal and hybrid photovoltaic/thermal applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信