火区煤贫氧燃烧阶段发展特征第一部分:热解和燃烧阶段特征的演化规律

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Guangyu Bai, Haihui Xin, Yi Yang, Junzhe Li, Xuyao Qi, Pengcheng Zhang, Jiakun Wang, Jinhu Liu, Liyang Ma
{"title":"火区煤贫氧燃烧阶段发展特征第一部分:热解和燃烧阶段特征的演化规律","authors":"Guangyu Bai,&nbsp;Haihui Xin,&nbsp;Yi Yang,&nbsp;Junzhe Li,&nbsp;Xuyao Qi,&nbsp;Pengcheng Zhang,&nbsp;Jiakun Wang,&nbsp;Jinhu Liu,&nbsp;Liyang Ma","doi":"10.1007/s10973-024-13865-3","DOIUrl":null,"url":null,"abstract":"<div><p>Coal fire oxygen-lean combustion is a global catastrophe, well known and difficult to describe. To deepen the understanding of the stage characteristics under the competition between pyrolysis and oxidation in coal oxygen-lean combustion. In this study, a TA-Q600 simultaneous thermal analyzer was used to investigate the macroscopic mass characteristics of three typical low-rank coals during oxygen-lean combustion processes under different time-scale effects. Through a coupled competitive comparison of pyrolysis and combustion characteristic temperature points, the stage characteristics and evolution laws of coal in the oxygen-lean combustion process were comprehensively analyzed. The results showed that the stage development of coal pyrolysis can be divided into four stages; under different time-scale effect, the higher the coal rank, the better the separation between the thermal decomposition and the thermal polycondensation processes. The stage development patterns of coal structure conversion combustion were divided into three categories, and the stage development types were divided into six categories. The difference in the burnout state caused by the decrease in oxygen concentration includes to 4–7 different combustion progressions. When the oxygen concentration falls within the range of 5–1%, the coal combustion stage transitions and delays from semi-coke burnout to coal coke burnout. The evolution of the burnout state, induced by the oxygen concentration, remained unaffected by the coal rank but was relatively less influenced by the time-scale effect. With an increase in the coal rank under a 1% oxygen concentration, the stage progression total gradually diminishes. This characteristic remains unaffected by the time-scale effect. As the coal rank increased, the influence of the time-scale effect on the oxygen concentration of the stage development pattern evolution became increasingly evident. The results of the study guided the identification of the development progression in different areas of the fire zone and provided safer temperature and oxygen concentration indicators for fire suppression work and unsealing of the fire zone.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"327 - 343"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stage development characteristics of oxygen-lean combustion of coal in fire zone. Part I: The evolution law of pyrolysis and combustion stage characteristics\",\"authors\":\"Guangyu Bai,&nbsp;Haihui Xin,&nbsp;Yi Yang,&nbsp;Junzhe Li,&nbsp;Xuyao Qi,&nbsp;Pengcheng Zhang,&nbsp;Jiakun Wang,&nbsp;Jinhu Liu,&nbsp;Liyang Ma\",\"doi\":\"10.1007/s10973-024-13865-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coal fire oxygen-lean combustion is a global catastrophe, well known and difficult to describe. To deepen the understanding of the stage characteristics under the competition between pyrolysis and oxidation in coal oxygen-lean combustion. In this study, a TA-Q600 simultaneous thermal analyzer was used to investigate the macroscopic mass characteristics of three typical low-rank coals during oxygen-lean combustion processes under different time-scale effects. Through a coupled competitive comparison of pyrolysis and combustion characteristic temperature points, the stage characteristics and evolution laws of coal in the oxygen-lean combustion process were comprehensively analyzed. The results showed that the stage development of coal pyrolysis can be divided into four stages; under different time-scale effect, the higher the coal rank, the better the separation between the thermal decomposition and the thermal polycondensation processes. The stage development patterns of coal structure conversion combustion were divided into three categories, and the stage development types were divided into six categories. The difference in the burnout state caused by the decrease in oxygen concentration includes to 4–7 different combustion progressions. When the oxygen concentration falls within the range of 5–1%, the coal combustion stage transitions and delays from semi-coke burnout to coal coke burnout. The evolution of the burnout state, induced by the oxygen concentration, remained unaffected by the coal rank but was relatively less influenced by the time-scale effect. With an increase in the coal rank under a 1% oxygen concentration, the stage progression total gradually diminishes. This characteristic remains unaffected by the time-scale effect. As the coal rank increased, the influence of the time-scale effect on the oxygen concentration of the stage development pattern evolution became increasingly evident. The results of the study guided the identification of the development progression in different areas of the fire zone and provided safer temperature and oxygen concentration indicators for fire suppression work and unsealing of the fire zone.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"150 1\",\"pages\":\"327 - 343\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13865-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13865-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

煤火贫氧燃烧是一场众所周知且难以描述的全球性灾难。加深对煤贫氧燃烧中热解与氧化竞争下的阶段特征的认识。采用TA-Q600型同步热分析仪,研究了3种典型低阶煤在不同时间尺度效应下贫氧燃烧过程的宏观质量特征。通过热解和燃烧特征温度点的耦合竞争对比,综合分析了煤在贫氧燃烧过程中的阶段特征和演化规律。结果表明:煤热解的阶段发展可分为4个阶段;在不同时标效应下,煤阶越高,热分解过程与热缩聚过程分离效果越好。将煤结构转化燃烧的阶段发展模式划分为三类,阶段发展类型划分为6类。氧浓度降低引起的燃尽状态差异包括4 ~ 7个不同的燃烧级数。当氧浓度在5 ~ 1%范围内时,煤的燃烧阶段由半焦燃尽过渡到煤焦燃尽。氧浓度引起的燃尽状态演化不受煤阶的影响,但受时间尺度效应的影响相对较小。在氧浓度为1%的条件下,随着煤阶的增加,阶段级数总量逐渐减小。这一特性不受时间尺度效应的影响。随着煤阶的增加,时间尺度效应对阶段发育模式演化的氧浓度影响越来越明显。研究结果可指导识别火区不同区域的发展进程,为灭火工作和火区开封提供更安全的温度和氧浓度指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stage development characteristics of oxygen-lean combustion of coal in fire zone. Part I: The evolution law of pyrolysis and combustion stage characteristics

Coal fire oxygen-lean combustion is a global catastrophe, well known and difficult to describe. To deepen the understanding of the stage characteristics under the competition between pyrolysis and oxidation in coal oxygen-lean combustion. In this study, a TA-Q600 simultaneous thermal analyzer was used to investigate the macroscopic mass characteristics of three typical low-rank coals during oxygen-lean combustion processes under different time-scale effects. Through a coupled competitive comparison of pyrolysis and combustion characteristic temperature points, the stage characteristics and evolution laws of coal in the oxygen-lean combustion process were comprehensively analyzed. The results showed that the stage development of coal pyrolysis can be divided into four stages; under different time-scale effect, the higher the coal rank, the better the separation between the thermal decomposition and the thermal polycondensation processes. The stage development patterns of coal structure conversion combustion were divided into three categories, and the stage development types were divided into six categories. The difference in the burnout state caused by the decrease in oxygen concentration includes to 4–7 different combustion progressions. When the oxygen concentration falls within the range of 5–1%, the coal combustion stage transitions and delays from semi-coke burnout to coal coke burnout. The evolution of the burnout state, induced by the oxygen concentration, remained unaffected by the coal rank but was relatively less influenced by the time-scale effect. With an increase in the coal rank under a 1% oxygen concentration, the stage progression total gradually diminishes. This characteristic remains unaffected by the time-scale effect. As the coal rank increased, the influence of the time-scale effect on the oxygen concentration of the stage development pattern evolution became increasingly evident. The results of the study guided the identification of the development progression in different areas of the fire zone and provided safer temperature and oxygen concentration indicators for fire suppression work and unsealing of the fire zone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信