富勒烯/氧化镁纳米复合材料去除水溶液中环丙沙星和四环素的效果研究

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-02-17 DOI:10.1039/D4RA07938H
Sammer M. Bekhit, Sahar A. Zaki, Mohamed Salah El-Din Hassouna and Marwa Elkady
{"title":"富勒烯/氧化镁纳米复合材料去除水溶液中环丙沙星和四环素的效果研究","authors":"Sammer M. Bekhit, Sahar A. Zaki, Mohamed Salah El-Din Hassouna and Marwa Elkady","doi":"10.1039/D4RA07938H","DOIUrl":null,"url":null,"abstract":"<p >The excessive use of antibiotics, including ciprofloxacin (CIP) and tetracycline (TC), poses negative impacts on both human health and ecosystems. In this work, fullerene/magnesium oxide (F/MgO) nanocomposite was prepared and studied as adsorbent for CIP and TC removal. Adding metal oxide to F led to a change in its characteristics which was confirmed by XRD, FTIR, SEM, and TEM. A maximal removal for 50 mg L<small><sup>−1</sup></small> CIP was 84.6% at 60 min, pH 7, and 0.2 g L<small><sup>−1</sup></small> of adsorbent dose. 43.6% of 50 mg L<small><sup>−1</sup></small> of TC adsorbed at 60 min, pH 5, and 1 g L<small><sup>−1</sup></small> of adsorbent dose. Adsorption thermodynamics elucidated that the adsorption on F/MgO nanocomposite were spontaneous and exothermic, and non-spontaneous and endothermic for CIP and TC, respectively. Pseudo-second-order kinetic model fitted well the adsorption data of CIP and TC. Various coexisting ions had different impacts on the adsorption efficiency of CIP and TC. The competitive adsorption between CIP and TC on the surface of F/MgO nanocomposite was studied. The F/MgO nanocomposite was efficiently reused 5 cycles for CIP and TC removal and remained effective. This work explores a novel adsorbent for the elimination of CIP and TC from aqueous solutions.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 7","pages":" 5190-5201"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra07938h?page=search","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of fullerene/magnesium oxide nanocomposite in removing ciprofloxacin and tetracycline from aqueous solutions†\",\"authors\":\"Sammer M. Bekhit, Sahar A. Zaki, Mohamed Salah El-Din Hassouna and Marwa Elkady\",\"doi\":\"10.1039/D4RA07938H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The excessive use of antibiotics, including ciprofloxacin (CIP) and tetracycline (TC), poses negative impacts on both human health and ecosystems. In this work, fullerene/magnesium oxide (F/MgO) nanocomposite was prepared and studied as adsorbent for CIP and TC removal. Adding metal oxide to F led to a change in its characteristics which was confirmed by XRD, FTIR, SEM, and TEM. A maximal removal for 50 mg L<small><sup>−1</sup></small> CIP was 84.6% at 60 min, pH 7, and 0.2 g L<small><sup>−1</sup></small> of adsorbent dose. 43.6% of 50 mg L<small><sup>−1</sup></small> of TC adsorbed at 60 min, pH 5, and 1 g L<small><sup>−1</sup></small> of adsorbent dose. Adsorption thermodynamics elucidated that the adsorption on F/MgO nanocomposite were spontaneous and exothermic, and non-spontaneous and endothermic for CIP and TC, respectively. Pseudo-second-order kinetic model fitted well the adsorption data of CIP and TC. Various coexisting ions had different impacts on the adsorption efficiency of CIP and TC. The competitive adsorption between CIP and TC on the surface of F/MgO nanocomposite was studied. The F/MgO nanocomposite was efficiently reused 5 cycles for CIP and TC removal and remained effective. This work explores a novel adsorbent for the elimination of CIP and TC from aqueous solutions.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 7\",\"pages\":\" 5190-5201\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra07938h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07938h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07938h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

包括环丙沙星(CIP)和四环素(TC)在内的抗生素的过度使用对人类健康和生态系统都造成了负面影响。本文制备了富勒烯/氧化镁(F/MgO)纳米复合材料,并对其作为吸附剂去除CIP和TC进行了研究。通过XRD、FTIR、SEM、TEM等测试手段证实了金属氧化物对F的影响。在60分钟、pH为7、吸附剂剂量为0.2 g L−1时,50 mg L−1 CIP的最大去除率为84.6%。43.6%的50 mg L−1的TC在60 min, pH为5,吸附剂剂量为1 g L−1时吸附。吸附热力学表明,CIP和TC在F/MgO纳米复合材料上的吸附分别是自发的放热吸附和非自发的吸热吸附。拟二级动力学模型拟合CIP和TC的吸附数据。不同的共存离子对CIP和TC的吸附效率有不同的影响。研究了CIP和TC在F/MgO纳米复合材料表面的竞争吸附。F/MgO纳米复合材料可重复使用5次,有效去除CIP和TC。本研究探索了一种新型吸附剂,用于消除水溶液中的CIP和TC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effectiveness of fullerene/magnesium oxide nanocomposite in removing ciprofloxacin and tetracycline from aqueous solutions†

Effectiveness of fullerene/magnesium oxide nanocomposite in removing ciprofloxacin and tetracycline from aqueous solutions†

The excessive use of antibiotics, including ciprofloxacin (CIP) and tetracycline (TC), poses negative impacts on both human health and ecosystems. In this work, fullerene/magnesium oxide (F/MgO) nanocomposite was prepared and studied as adsorbent for CIP and TC removal. Adding metal oxide to F led to a change in its characteristics which was confirmed by XRD, FTIR, SEM, and TEM. A maximal removal for 50 mg L−1 CIP was 84.6% at 60 min, pH 7, and 0.2 g L−1 of adsorbent dose. 43.6% of 50 mg L−1 of TC adsorbed at 60 min, pH 5, and 1 g L−1 of adsorbent dose. Adsorption thermodynamics elucidated that the adsorption on F/MgO nanocomposite were spontaneous and exothermic, and non-spontaneous and endothermic for CIP and TC, respectively. Pseudo-second-order kinetic model fitted well the adsorption data of CIP and TC. Various coexisting ions had different impacts on the adsorption efficiency of CIP and TC. The competitive adsorption between CIP and TC on the surface of F/MgO nanocomposite was studied. The F/MgO nanocomposite was efficiently reused 5 cycles for CIP and TC removal and remained effective. This work explores a novel adsorbent for the elimination of CIP and TC from aqueous solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信