多层神经网络模拟拓扑的发展

Luã da Porciuncula Estrela , Marlon Soares Sigales , Elmer A. Gamboa Peñaloza , Marcelo Lemos Rossi , Mateus Beck Fonseca
{"title":"多层神经网络模拟拓扑的发展","authors":"Luã da Porciuncula Estrela ,&nbsp;Marlon Soares Sigales ,&nbsp;Elmer A. Gamboa Peñaloza ,&nbsp;Marcelo Lemos Rossi ,&nbsp;Mateus Beck Fonseca","doi":"10.1016/j.memori.2025.100125","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel approach to implementing artificial neural networks (ANNs) using analog circuits with counter circuits for storing and updating the weights and biases. The counter circuits, which are sequential logic circuits, provide a more precise and stable method for storing and updating the network parameters, compared to memristors. The paper also discusses the design of a multiplier circuit and a hyperbolic function activation circuit used in the neural network. The neural network model based on the XNOR logic function was simulated using a simulation program with integrated circuit emphasis (SPICE), demonstrating its learning capability as the error decreased for each epoch of training. The proposed methodology offers significant advantages for neuromorphic computing, especially in the domain of Internet of Things (IoT), where near-sensor data analysis and edge computation are essential.</div></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"9 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an analog topology for a multi-layer neuronal network\",\"authors\":\"Luã da Porciuncula Estrela ,&nbsp;Marlon Soares Sigales ,&nbsp;Elmer A. Gamboa Peñaloza ,&nbsp;Marcelo Lemos Rossi ,&nbsp;Mateus Beck Fonseca\",\"doi\":\"10.1016/j.memori.2025.100125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel approach to implementing artificial neural networks (ANNs) using analog circuits with counter circuits for storing and updating the weights and biases. The counter circuits, which are sequential logic circuits, provide a more precise and stable method for storing and updating the network parameters, compared to memristors. The paper also discusses the design of a multiplier circuit and a hyperbolic function activation circuit used in the neural network. The neural network model based on the XNOR logic function was simulated using a simulation program with integrated circuit emphasis (SPICE), demonstrating its learning capability as the error decreased for each epoch of training. The proposed methodology offers significant advantages for neuromorphic computing, especially in the domain of Internet of Things (IoT), where near-sensor data analysis and edge computation are essential.</div></div>\",\"PeriodicalId\":100915,\"journal\":{\"name\":\"Memories - Materials, Devices, Circuits and Systems\",\"volume\":\"9 \",\"pages\":\"Article 100125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memories - Materials, Devices, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773064625000052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064625000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种实现人工神经网络的新方法,利用模拟电路和反电路来存储和更新权值和偏置。与忆阻器相比,计数器电路是顺序逻辑电路,为存储和更新网络参数提供了更精确和稳定的方法。本文还讨论了用于神经网络的乘法器电路和双曲函数激活电路的设计。利用集成电路重点(SPICE)仿真程序对基于XNOR逻辑函数的神经网络模型进行了仿真,验证了其学习能力随训练周期误差的减小而减小。所提出的方法为神经形态计算提供了显着优势,特别是在物联网(IoT)领域,其中近传感器数据分析和边缘计算是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an analog topology for a multi-layer neuronal network
This paper presents a novel approach to implementing artificial neural networks (ANNs) using analog circuits with counter circuits for storing and updating the weights and biases. The counter circuits, which are sequential logic circuits, provide a more precise and stable method for storing and updating the network parameters, compared to memristors. The paper also discusses the design of a multiplier circuit and a hyperbolic function activation circuit used in the neural network. The neural network model based on the XNOR logic function was simulated using a simulation program with integrated circuit emphasis (SPICE), demonstrating its learning capability as the error decreased for each epoch of training. The proposed methodology offers significant advantages for neuromorphic computing, especially in the domain of Internet of Things (IoT), where near-sensor data analysis and edge computation are essential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信