在相同的机器上使用贴现利润标准进行调度

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Weidong Li , Yaru Yang , Man Xiao , Xin Chen , Małgorzata Sterna , Jacek Błażewicz
{"title":"在相同的机器上使用贴现利润标准进行调度","authors":"Weidong Li ,&nbsp;Yaru Yang ,&nbsp;Man Xiao ,&nbsp;Xin Chen ,&nbsp;Małgorzata Sterna ,&nbsp;Jacek Błażewicz","doi":"10.1016/j.dam.2025.02.015","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a novel scheduling criterion named as a discounted profit (to be maximized), which could be considered as a generalization of early work (also to be maximized). The goals of such scheduling models are to maximize <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>+</mo><mi>δ</mi><msub><mrow><mi>Y</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>\n (<span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>) is the early (late) work of job <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, and <span><math><mrow><mn>0</mn><mo>≤</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> is a discount factor. When <span><math><mrow><mi>δ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, these models are reduced to the ones with early work maximization. We focus on the models of scheduling on identical machines when jobs share a common due date. For the online case, we prove that the competitive ratio of the classical List Scheduling (LS) algorithm is exactly <span><math><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn><mo>+</mo><mi>δ</mi></mrow></mfrac></math></span>, improving the seminal result (<span><math><msqrt><mrow><mn>2</mn></mrow></msqrt></math></span>) and covering the very recent result (<span><math><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>) when <span><math><mrow><mi>δ</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Moreover, when the number of machines <span><math><mrow><mi>m</mi><mo>=</mo><mn>2</mn></mrow></math></span>, we propose a new optimal online algorithm with a competitive ratio <span><math><mfrac><mrow><msqrt><mrow><mn>2</mn><mi>δ</mi><mo>+</mo><mn>5</mn></mrow></msqrt><mo>+</mo><mn>2</mn><mi>δ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>δ</mi><msqrt><mrow><mn>2</mn><mi>δ</mi><mo>+</mo><mn>5</mn></mrow></msqrt><mo>+</mo><mn>1</mn></mrow></mfrac></math></span>, matching the previous best known result (<span><math><mrow><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>−</mo><mn>1</mn></mrow></math></span>) when <span><math><mrow><mi>δ</mi><mo>=</mo><mn>0</mn></mrow></math></span>. For the offline case, we prove that the Longest Processing Time first (LPT) algorithm has an approximation ratio <span><math><mfrac><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><mo>+</mo><mrow><mo>(</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>δ</mi></mrow></mfrac></math></span>, extending the existed results when <span><math><mrow><mi>δ</mi><mo>=</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>m</mi><mo>=</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 195-209"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scheduling with a discounted profit criterion on identical machines\",\"authors\":\"Weidong Li ,&nbsp;Yaru Yang ,&nbsp;Man Xiao ,&nbsp;Xin Chen ,&nbsp;Małgorzata Sterna ,&nbsp;Jacek Błażewicz\",\"doi\":\"10.1016/j.dam.2025.02.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a novel scheduling criterion named as a discounted profit (to be maximized), which could be considered as a generalization of early work (also to be maximized). The goals of such scheduling models are to maximize <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>+</mo><mi>δ</mi><msub><mrow><mi>Y</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>\\n (<span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>) is the early (late) work of job <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, and <span><math><mrow><mn>0</mn><mo>≤</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> is a discount factor. When <span><math><mrow><mi>δ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, these models are reduced to the ones with early work maximization. We focus on the models of scheduling on identical machines when jobs share a common due date. For the online case, we prove that the competitive ratio of the classical List Scheduling (LS) algorithm is exactly <span><math><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn><mo>+</mo><mi>δ</mi></mrow></mfrac></math></span>, improving the seminal result (<span><math><msqrt><mrow><mn>2</mn></mrow></msqrt></math></span>) and covering the very recent result (<span><math><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>) when <span><math><mrow><mi>δ</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Moreover, when the number of machines <span><math><mrow><mi>m</mi><mo>=</mo><mn>2</mn></mrow></math></span>, we propose a new optimal online algorithm with a competitive ratio <span><math><mfrac><mrow><msqrt><mrow><mn>2</mn><mi>δ</mi><mo>+</mo><mn>5</mn></mrow></msqrt><mo>+</mo><mn>2</mn><mi>δ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>δ</mi><msqrt><mrow><mn>2</mn><mi>δ</mi><mo>+</mo><mn>5</mn></mrow></msqrt><mo>+</mo><mn>1</mn></mrow></mfrac></math></span>, matching the previous best known result (<span><math><mrow><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>−</mo><mn>1</mn></mrow></math></span>) when <span><math><mrow><mi>δ</mi><mo>=</mo><mn>0</mn></mrow></math></span>. For the offline case, we prove that the Longest Processing Time first (LPT) algorithm has an approximation ratio <span><math><mfrac><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><mo>+</mo><mrow><mo>(</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>δ</mi></mrow></mfrac></math></span>, extending the existed results when <span><math><mrow><mi>δ</mi><mo>=</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>m</mi><mo>=</mo><mn>2</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"367 \",\"pages\":\"Pages 195-209\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25000782\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25000782","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了一个新的调度准则,称为贴现利润(最大化),它可以被认为是早期工作(最大化)的推广。该调度模型的目标是最大化∑j=1n(Xj+δYj),其中Xj (Yj)为作业Jj的早(晚)工,0≤δ<;1为折现因子。当δ=0时,这些模型简化为具有早期工作最大化的模型。我们关注在相同机器上,当作业共享一个共同的截止日期时的调度模型。对于在线情况,我们证明了经典列表调度(LS)算法的竞争比恰好是43+δ,改进了原始结果(2),并覆盖了δ=0时的最新结果(43)。此外,当机器数量m=2时,我们提出了一个新的最优在线算法,竞争比为2δ+5+2δ−1δ2δ+5+1,与δ=0时的最优结果(5−1)相匹配。对于离线情况,我们证明了LPT算法的近似比为2+12+(2−1)δ,扩展了δ=0和m=2时已有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling with a discounted profit criterion on identical machines
In this paper, we introduce a novel scheduling criterion named as a discounted profit (to be maximized), which could be considered as a generalization of early work (also to be maximized). The goals of such scheduling models are to maximize j=1n(Xj+δYj), where Xj (Yj) is the early (late) work of job Jj, and 0δ<1 is a discount factor. When δ=0, these models are reduced to the ones with early work maximization. We focus on the models of scheduling on identical machines when jobs share a common due date. For the online case, we prove that the competitive ratio of the classical List Scheduling (LS) algorithm is exactly 43+δ, improving the seminal result (2) and covering the very recent result (43) when δ=0. Moreover, when the number of machines m=2, we propose a new optimal online algorithm with a competitive ratio 2δ+5+2δ1δ2δ+5+1, matching the previous best known result (51) when δ=0. For the offline case, we prove that the Longest Processing Time first (LPT) algorithm has an approximation ratio 2+12+(21)δ, extending the existed results when δ=0 and m=2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信