求解大型稀疏线性系统的改进带残差的部分随机扩展Kaczmarz方法

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chen-Xiao Gao, Fang Chen
{"title":"求解大型稀疏线性系统的改进带残差的部分随机扩展Kaczmarz方法","authors":"Chen-Xiao Gao,&nbsp;Fang Chen","doi":"10.1016/j.apnum.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>The partially randomized extended Kaczmarz method with residual is effective for solving large sparse linear systems. In this paper, an improved variant of this method is proposed and its expected exponential convergence rate is proved. In addition, numerical results show that this method can preform better than the partially randomized extended Kaczmarz method with residual.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"212 ","pages":"Pages 215-222"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified partially randomized extended Kaczmarz method with residual for solving large sparse linear systems\",\"authors\":\"Chen-Xiao Gao,&nbsp;Fang Chen\",\"doi\":\"10.1016/j.apnum.2025.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The partially randomized extended Kaczmarz method with residual is effective for solving large sparse linear systems. In this paper, an improved variant of this method is proposed and its expected exponential convergence rate is proved. In addition, numerical results show that this method can preform better than the partially randomized extended Kaczmarz method with residual.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"212 \",\"pages\":\"Pages 215-222\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425000285\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425000285","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

带残差的部分随机扩展Kaczmarz方法是求解大型稀疏线性系统的有效方法。本文提出了该方法的一种改进形式,并证明了其预期的指数收敛速度。此外,数值结果表明,该方法优于带残差的部分随机扩展Kaczmarz方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified partially randomized extended Kaczmarz method with residual for solving large sparse linear systems
The partially randomized extended Kaczmarz method with residual is effective for solving large sparse linear systems. In this paper, an improved variant of this method is proposed and its expected exponential convergence rate is proved. In addition, numerical results show that this method can preform better than the partially randomized extended Kaczmarz method with residual.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信