Dan Xu , Mingming Zhao , Guilin Liu , Tingting Zhu , Yi Cai , Rumi Murayama , Yong Yue , Kenji Hashimoto
{"title":"迷走神经依赖的肺脑轴介导急性肺损伤后的脑脱髓鞘","authors":"Dan Xu , Mingming Zhao , Guilin Liu , Tingting Zhu , Yi Cai , Rumi Murayama , Yong Yue , Kenji Hashimoto","doi":"10.1016/j.bbih.2025.100966","DOIUrl":null,"url":null,"abstract":"<div><div>Patients with acute lung injury (ALI) often experience psychiatric and neurological symptoms; however, the precise underlying mechanisms remain unclear. Given that white matter loss (demyelination) contributes to these symptoms, we investigated whether lipopolysaccharide (LPS)-induced ALI leads to brain demyelination via a vagus nerve-dependent lung-brain axis. A single intratracheal injection of LPS caused severe lung injury and demyelination in the corpus callosum (CC) of mouse brains. Subdiaphragmatic vagotomy did not affect LPS-induced lung injury or demyelination in the CC. Interestingly, cervical vagotomy significantly attenuated LPS-induced hypo-locomotion, plasma interleukin-6 levels, and demyelination in the CC of ALI mice without influencing lung injury. These findings demonstrate that ALI can induce demyelination in the CC of the mouse brain via a cervical vagus nerve-dependent lung-brain axis, highlighting the critical role of this pathway in the psychiatric and neurological symptoms observed in ALI patients.</div></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"44 ","pages":"Article 100966"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The vagus nerve-dependent lung-brain axis mediates brain demyelination following acute lung injury\",\"authors\":\"Dan Xu , Mingming Zhao , Guilin Liu , Tingting Zhu , Yi Cai , Rumi Murayama , Yong Yue , Kenji Hashimoto\",\"doi\":\"10.1016/j.bbih.2025.100966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Patients with acute lung injury (ALI) often experience psychiatric and neurological symptoms; however, the precise underlying mechanisms remain unclear. Given that white matter loss (demyelination) contributes to these symptoms, we investigated whether lipopolysaccharide (LPS)-induced ALI leads to brain demyelination via a vagus nerve-dependent lung-brain axis. A single intratracheal injection of LPS caused severe lung injury and demyelination in the corpus callosum (CC) of mouse brains. Subdiaphragmatic vagotomy did not affect LPS-induced lung injury or demyelination in the CC. Interestingly, cervical vagotomy significantly attenuated LPS-induced hypo-locomotion, plasma interleukin-6 levels, and demyelination in the CC of ALI mice without influencing lung injury. These findings demonstrate that ALI can induce demyelination in the CC of the mouse brain via a cervical vagus nerve-dependent lung-brain axis, highlighting the critical role of this pathway in the psychiatric and neurological symptoms observed in ALI patients.</div></div>\",\"PeriodicalId\":72454,\"journal\":{\"name\":\"Brain, behavior, & immunity - health\",\"volume\":\"44 \",\"pages\":\"Article 100966\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain, behavior, & immunity - health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666354625000249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, behavior, & immunity - health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666354625000249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The vagus nerve-dependent lung-brain axis mediates brain demyelination following acute lung injury
Patients with acute lung injury (ALI) often experience psychiatric and neurological symptoms; however, the precise underlying mechanisms remain unclear. Given that white matter loss (demyelination) contributes to these symptoms, we investigated whether lipopolysaccharide (LPS)-induced ALI leads to brain demyelination via a vagus nerve-dependent lung-brain axis. A single intratracheal injection of LPS caused severe lung injury and demyelination in the corpus callosum (CC) of mouse brains. Subdiaphragmatic vagotomy did not affect LPS-induced lung injury or demyelination in the CC. Interestingly, cervical vagotomy significantly attenuated LPS-induced hypo-locomotion, plasma interleukin-6 levels, and demyelination in the CC of ALI mice without influencing lung injury. These findings demonstrate that ALI can induce demyelination in the CC of the mouse brain via a cervical vagus nerve-dependent lung-brain axis, highlighting the critical role of this pathway in the psychiatric and neurological symptoms observed in ALI patients.