人工智能在脊髓损伤中的诊断和预后能力:系统综述

IF 1.9 Q3 CLINICAL NEUROLOGY
Saran Singh Gill , Hariharan Subbiah Ponniah , Sho Giersztein , Rishi Miriyala Anantharaj , Srikar Reddy Namireddy , Joshua Killilea , DanieleS.C. Ramsay , Ahmed Salih , Ahkash Thavarajasingam , Daniel Scurtu , Dragan Jankovic , Salvatore Russo , Andreas Kramer , Santhosh G. Thavarajasingam
{"title":"人工智能在脊髓损伤中的诊断和预后能力:系统综述","authors":"Saran Singh Gill ,&nbsp;Hariharan Subbiah Ponniah ,&nbsp;Sho Giersztein ,&nbsp;Rishi Miriyala Anantharaj ,&nbsp;Srikar Reddy Namireddy ,&nbsp;Joshua Killilea ,&nbsp;DanieleS.C. Ramsay ,&nbsp;Ahmed Salih ,&nbsp;Ahkash Thavarajasingam ,&nbsp;Daniel Scurtu ,&nbsp;Dragan Jankovic ,&nbsp;Salvatore Russo ,&nbsp;Andreas Kramer ,&nbsp;Santhosh G. Thavarajasingam","doi":"10.1016/j.bas.2025.104208","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Artificial intelligence (AI) models have shown potential for diagnosing and prognosticating traumatic spinal cord injury (tSCI), but their clinical utility remains uncertain.</div></div><div><h3>Method</h3><div>ology: The primary aim was to evaluate the performance of AI algorithms in diagnosing and prognosticating tSCI. Subsequent systematic searching of seven databases identified studies evaluating AI models. PROBAST and TRIPOD tools were used to assess the quality and reporting of included studies (PROSPERO: CRD42023464722). Fourteen studies, comprising 20 models and 280,817 pooled imaging datasets, were included. Analysis was conducted in line with the SWiM guidelines.</div></div><div><h3>Results</h3><div>For prognostication, 11 studies predicted outcomes including AIS improvement (30%), mortality and ambulatory ability (20% each), and discharge or length of stay (10%). The mean AUC was 0.770 (range: 0.682–0.902), indicating moderate predictive performance. Diagnostic models utilising DTI, CT, and T2-weighted MRI with CNN-based segmentation achieved a weighted mean accuracy of 0.898 (range: 0.813–0.938), outperforming prognostic models.</div></div><div><h3>Conclusion</h3><div>AI demonstrates strong diagnostic accuracy (mean accuracy: 0.898) and moderate prognostic capability (mean AUC: 0.770) for tSCI. However, the lack of standardised frameworks and external validation limits clinical applicability. Future models should integrate multimodal data, including imaging, patient characteristics, and clinician judgment, to improve utility and alignment with clinical practice.</div></div>","PeriodicalId":72443,"journal":{"name":"Brain & spine","volume":"5 ","pages":"Article 104208"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The diagnostic and prognostic capability of artificial intelligence in spinal cord injury: A systematic review\",\"authors\":\"Saran Singh Gill ,&nbsp;Hariharan Subbiah Ponniah ,&nbsp;Sho Giersztein ,&nbsp;Rishi Miriyala Anantharaj ,&nbsp;Srikar Reddy Namireddy ,&nbsp;Joshua Killilea ,&nbsp;DanieleS.C. Ramsay ,&nbsp;Ahmed Salih ,&nbsp;Ahkash Thavarajasingam ,&nbsp;Daniel Scurtu ,&nbsp;Dragan Jankovic ,&nbsp;Salvatore Russo ,&nbsp;Andreas Kramer ,&nbsp;Santhosh G. Thavarajasingam\",\"doi\":\"10.1016/j.bas.2025.104208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Artificial intelligence (AI) models have shown potential for diagnosing and prognosticating traumatic spinal cord injury (tSCI), but their clinical utility remains uncertain.</div></div><div><h3>Method</h3><div>ology: The primary aim was to evaluate the performance of AI algorithms in diagnosing and prognosticating tSCI. Subsequent systematic searching of seven databases identified studies evaluating AI models. PROBAST and TRIPOD tools were used to assess the quality and reporting of included studies (PROSPERO: CRD42023464722). Fourteen studies, comprising 20 models and 280,817 pooled imaging datasets, were included. Analysis was conducted in line with the SWiM guidelines.</div></div><div><h3>Results</h3><div>For prognostication, 11 studies predicted outcomes including AIS improvement (30%), mortality and ambulatory ability (20% each), and discharge or length of stay (10%). The mean AUC was 0.770 (range: 0.682–0.902), indicating moderate predictive performance. Diagnostic models utilising DTI, CT, and T2-weighted MRI with CNN-based segmentation achieved a weighted mean accuracy of 0.898 (range: 0.813–0.938), outperforming prognostic models.</div></div><div><h3>Conclusion</h3><div>AI demonstrates strong diagnostic accuracy (mean accuracy: 0.898) and moderate prognostic capability (mean AUC: 0.770) for tSCI. However, the lack of standardised frameworks and external validation limits clinical applicability. Future models should integrate multimodal data, including imaging, patient characteristics, and clinician judgment, to improve utility and alignment with clinical practice.</div></div>\",\"PeriodicalId\":72443,\"journal\":{\"name\":\"Brain & spine\",\"volume\":\"5 \",\"pages\":\"Article 104208\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain & spine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277252942500027X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain & spine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277252942500027X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)模型已显示出诊断和预测创伤性脊髓损伤(tSCI)的潜力,但其临床应用仍不确定。方法:主要目的是评估人工智能算法在诊断和预测tSCI方面的性能。随后对七个数据库进行系统搜索,确定了评估人工智能模型的研究。PROBAST和TRIPOD工具用于评估纳入研究的质量和报告(PROSPERO: CRD42023464722)。纳入14项研究,包括20个模型和280,817个合并成像数据集。根据SWiM指南进行分析。结果在预测方面,11项研究预测的结果包括AIS改善(30%)、死亡率和活动能力(各20%)、出院或住院时间(10%)。平均AUC为0.770(范围:0.682-0.902),表明预测性能中等。使用DTI、CT和t2加权MRI与cnn分割的诊断模型的加权平均准确率为0.898(范围:0.813-0.938),优于预后模型。结论人工智能对tSCI具有较强的诊断准确性(平均准确率:0.898)和中等预后能力(平均AUC: 0.770)。然而,缺乏标准化框架和外部验证限制了临床适用性。未来的模型应该整合多模式数据,包括影像、患者特征和临床医生判断,以提高效用并与临床实践保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diagnostic and prognostic capability of artificial intelligence in spinal cord injury: A systematic review

Background

Artificial intelligence (AI) models have shown potential for diagnosing and prognosticating traumatic spinal cord injury (tSCI), but their clinical utility remains uncertain.

Method

ology: The primary aim was to evaluate the performance of AI algorithms in diagnosing and prognosticating tSCI. Subsequent systematic searching of seven databases identified studies evaluating AI models. PROBAST and TRIPOD tools were used to assess the quality and reporting of included studies (PROSPERO: CRD42023464722). Fourteen studies, comprising 20 models and 280,817 pooled imaging datasets, were included. Analysis was conducted in line with the SWiM guidelines.

Results

For prognostication, 11 studies predicted outcomes including AIS improvement (30%), mortality and ambulatory ability (20% each), and discharge or length of stay (10%). The mean AUC was 0.770 (range: 0.682–0.902), indicating moderate predictive performance. Diagnostic models utilising DTI, CT, and T2-weighted MRI with CNN-based segmentation achieved a weighted mean accuracy of 0.898 (range: 0.813–0.938), outperforming prognostic models.

Conclusion

AI demonstrates strong diagnostic accuracy (mean accuracy: 0.898) and moderate prognostic capability (mean AUC: 0.770) for tSCI. However, the lack of standardised frameworks and external validation limits clinical applicability. Future models should integrate multimodal data, including imaging, patient characteristics, and clinician judgment, to improve utility and alignment with clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain & spine
Brain & spine Surgery
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信