Yufei Zhou , Yue Gao , Xi Chen , Hongyin Zhang , Qingqiu Jiang , Jian-Wen Qiu , Jack Chi-Ho Ip , Jin Sun
{"title":"苹果螺幼体作为淡水污染的新生物监测仪:铜和铅的毒性及其分子机制","authors":"Yufei Zhou , Yue Gao , Xi Chen , Hongyin Zhang , Qingqiu Jiang , Jian-Wen Qiu , Jack Chi-Ho Ip , Jin Sun","doi":"10.1016/j.scitotenv.2025.178844","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental pollutants, such as heavy metals, pose significant threats to organisms across different trophic levels in the aquatic environment. Although the effects of heavy metals have been extensively studied in a limited number of model organisms, their toxicity and underlying mechanisms remain poorly understood in numerous aquatic invertebrates. Here, we underscore the potential of the apple snail <em>Pomacea canaliculata</em> as an environmental bioindicator for freshwater heavy metal pollution, advancing biomonitoring methodologies. By integrating physiological, enzymatic, transcriptomic, and proteomic analyses, we conducted a thorough evaluation of the toxic effects and mechanisms of copper (Cu) and lead (Pb) on juvenile snails. Our results demonstrated that juvenile <em>P. canaliculata</em> was more sensitive to Cu and Pb compared with other aquatic invertebrates with heart rate drop serving as a reliable indicator of metal exposure. Antioxidant enzyme activity exhibited a distinct response, increasing at low Pb concentrations but decreasing at high concentrations, while Cu suppressed the activity even at a low concentration. At the molecular level, a total of 467 and 267 differentially expressed genes and 629 and 204 differentially expressed proteins were identified in the juveniles exposed to sublethal concentrations of Cu (40 μg/L) and Pb (1500 μg/L) for 72 h, respectively. Functional analysis further revealed distinct molecular toxicity in <em>P. canaliculata</em>. Under Pb exposure, key pathways related to cellular oxidant detoxification, transmembrane transporter activity, and ATP hydrolysis activity were enriched, while Cu significantly activated chitin binding, oxidoreductase activity and extracellular region. Overall, our findings highlight the exceptional capacity of <em>P. canaliculata</em> juveniles to differentiate the toxicity and molecular toxic mechanisms of heavy metals, establishing this species as an important and sensitive biomonitor for accurately assessing freshwater heavy metal pollution. This advancement enhances our understanding of ecological health and offers valuable tools for policymakers and conservationists to address the impacts of environmental contaminants.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"967 ","pages":"Article 178844"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Juvenile apple snails as new biomonitors of freshwater pollution: Insight into copper and lead toxicity and underlying molecular mechanisms\",\"authors\":\"Yufei Zhou , Yue Gao , Xi Chen , Hongyin Zhang , Qingqiu Jiang , Jian-Wen Qiu , Jack Chi-Ho Ip , Jin Sun\",\"doi\":\"10.1016/j.scitotenv.2025.178844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Environmental pollutants, such as heavy metals, pose significant threats to organisms across different trophic levels in the aquatic environment. Although the effects of heavy metals have been extensively studied in a limited number of model organisms, their toxicity and underlying mechanisms remain poorly understood in numerous aquatic invertebrates. Here, we underscore the potential of the apple snail <em>Pomacea canaliculata</em> as an environmental bioindicator for freshwater heavy metal pollution, advancing biomonitoring methodologies. By integrating physiological, enzymatic, transcriptomic, and proteomic analyses, we conducted a thorough evaluation of the toxic effects and mechanisms of copper (Cu) and lead (Pb) on juvenile snails. Our results demonstrated that juvenile <em>P. canaliculata</em> was more sensitive to Cu and Pb compared with other aquatic invertebrates with heart rate drop serving as a reliable indicator of metal exposure. Antioxidant enzyme activity exhibited a distinct response, increasing at low Pb concentrations but decreasing at high concentrations, while Cu suppressed the activity even at a low concentration. At the molecular level, a total of 467 and 267 differentially expressed genes and 629 and 204 differentially expressed proteins were identified in the juveniles exposed to sublethal concentrations of Cu (40 μg/L) and Pb (1500 μg/L) for 72 h, respectively. Functional analysis further revealed distinct molecular toxicity in <em>P. canaliculata</em>. Under Pb exposure, key pathways related to cellular oxidant detoxification, transmembrane transporter activity, and ATP hydrolysis activity were enriched, while Cu significantly activated chitin binding, oxidoreductase activity and extracellular region. Overall, our findings highlight the exceptional capacity of <em>P. canaliculata</em> juveniles to differentiate the toxicity and molecular toxic mechanisms of heavy metals, establishing this species as an important and sensitive biomonitor for accurately assessing freshwater heavy metal pollution. This advancement enhances our understanding of ecological health and offers valuable tools for policymakers and conservationists to address the impacts of environmental contaminants.</div></div>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"967 \",\"pages\":\"Article 178844\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969725004796\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725004796","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Juvenile apple snails as new biomonitors of freshwater pollution: Insight into copper and lead toxicity and underlying molecular mechanisms
Environmental pollutants, such as heavy metals, pose significant threats to organisms across different trophic levels in the aquatic environment. Although the effects of heavy metals have been extensively studied in a limited number of model organisms, their toxicity and underlying mechanisms remain poorly understood in numerous aquatic invertebrates. Here, we underscore the potential of the apple snail Pomacea canaliculata as an environmental bioindicator for freshwater heavy metal pollution, advancing biomonitoring methodologies. By integrating physiological, enzymatic, transcriptomic, and proteomic analyses, we conducted a thorough evaluation of the toxic effects and mechanisms of copper (Cu) and lead (Pb) on juvenile snails. Our results demonstrated that juvenile P. canaliculata was more sensitive to Cu and Pb compared with other aquatic invertebrates with heart rate drop serving as a reliable indicator of metal exposure. Antioxidant enzyme activity exhibited a distinct response, increasing at low Pb concentrations but decreasing at high concentrations, while Cu suppressed the activity even at a low concentration. At the molecular level, a total of 467 and 267 differentially expressed genes and 629 and 204 differentially expressed proteins were identified in the juveniles exposed to sublethal concentrations of Cu (40 μg/L) and Pb (1500 μg/L) for 72 h, respectively. Functional analysis further revealed distinct molecular toxicity in P. canaliculata. Under Pb exposure, key pathways related to cellular oxidant detoxification, transmembrane transporter activity, and ATP hydrolysis activity were enriched, while Cu significantly activated chitin binding, oxidoreductase activity and extracellular region. Overall, our findings highlight the exceptional capacity of P. canaliculata juveniles to differentiate the toxicity and molecular toxic mechanisms of heavy metals, establishing this species as an important and sensitive biomonitor for accurately assessing freshwater heavy metal pollution. This advancement enhances our understanding of ecological health and offers valuable tools for policymakers and conservationists to address the impacts of environmental contaminants.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.