探究手机元数据在贫困预测和影响评估中的局限性

IF 4.6 1区 经济学 Q1 ECONOMICS
Oscar Barriga-Cabanillas , Joshua E. Blumenstock , Travis J. Lybbert , Daniel S. Putman
{"title":"探究手机元数据在贫困预测和影响评估中的局限性","authors":"Oscar Barriga-Cabanillas ,&nbsp;Joshua E. Blumenstock ,&nbsp;Travis J. Lybbert ,&nbsp;Daniel S. Putman","doi":"10.1016/j.jdeveco.2025.103462","DOIUrl":null,"url":null,"abstract":"<div><div>A series of recent papers demonstrate that mobile phone metadata can, together with machine learning, estimate the wealth of individual subscribers and accurately target cash transfer programs. In the context of an emergency cash transfer program in Haiti, we combine surveys and mobile phone call detail records (CDR) to test whether such methods can be used to estimate the program’s impact on household expenditures. We find that CDR-based predictions of total and food expenditures are much less accurate than predictions of wealth—particularly when estimated on a relatively homogeneous sample of rural communities eligible for the program. While impact estimates based on conventional survey data are positive and statistically significant, estimates based on CDR predictions are not statistically significant. In a postmortem discussion, we assess reasons for this failure and discuss the implications for using big data in poverty measurement and impact evaluation.</div></div>","PeriodicalId":48418,"journal":{"name":"Journal of Development Economics","volume":"174 ","pages":"Article 103462"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the limits of mobile phone metadata for poverty prediction and impact evaluation\",\"authors\":\"Oscar Barriga-Cabanillas ,&nbsp;Joshua E. Blumenstock ,&nbsp;Travis J. Lybbert ,&nbsp;Daniel S. Putman\",\"doi\":\"10.1016/j.jdeveco.2025.103462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A series of recent papers demonstrate that mobile phone metadata can, together with machine learning, estimate the wealth of individual subscribers and accurately target cash transfer programs. In the context of an emergency cash transfer program in Haiti, we combine surveys and mobile phone call detail records (CDR) to test whether such methods can be used to estimate the program’s impact on household expenditures. We find that CDR-based predictions of total and food expenditures are much less accurate than predictions of wealth—particularly when estimated on a relatively homogeneous sample of rural communities eligible for the program. While impact estimates based on conventional survey data are positive and statistically significant, estimates based on CDR predictions are not statistically significant. In a postmortem discussion, we assess reasons for this failure and discuss the implications for using big data in poverty measurement and impact evaluation.</div></div>\",\"PeriodicalId\":48418,\"journal\":{\"name\":\"Journal of Development Economics\",\"volume\":\"174 \",\"pages\":\"Article 103462\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Development Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304387825000136\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Development Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304387825000136","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

最近的一系列论文表明,手机元数据可以与机器学习一起估计个人用户的财富,并准确地定位现金转移计划。在海地紧急现金转移计划的背景下,我们结合调查和手机通话详细记录(CDR)来测试这些方法是否可以用来估计该计划对家庭支出的影响。我们发现,基于cdr的总支出和食品支出预测远不如对财富的预测准确,尤其是在对符合该计划条件的相对同质的农村社区样本进行估计时。虽然基于传统调查数据的影响估计是积极的和具有统计意义的,但基于CDR预测的估计在统计上并不显著。在事后讨论中,我们评估了这一失败的原因,并讨论了在贫困衡量和影响评估中使用大数据的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing the limits of mobile phone metadata for poverty prediction and impact evaluation
A series of recent papers demonstrate that mobile phone metadata can, together with machine learning, estimate the wealth of individual subscribers and accurately target cash transfer programs. In the context of an emergency cash transfer program in Haiti, we combine surveys and mobile phone call detail records (CDR) to test whether such methods can be used to estimate the program’s impact on household expenditures. We find that CDR-based predictions of total and food expenditures are much less accurate than predictions of wealth—particularly when estimated on a relatively homogeneous sample of rural communities eligible for the program. While impact estimates based on conventional survey data are positive and statistically significant, estimates based on CDR predictions are not statistically significant. In a postmortem discussion, we assess reasons for this failure and discuss the implications for using big data in poverty measurement and impact evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
4.00%
发文量
126
审稿时长
72 days
期刊介绍: The Journal of Development Economics publishes papers relating to all aspects of economic development - from immediate policy concerns to structural problems of underdevelopment. The emphasis is on quantitative or analytical work, which is relevant as well as intellectually stimulating.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信