一种新的苜蓿绿色可逆性白化突变体的鉴定

IF 4 3区 生物学 Q1 PLANT SCIENCES
Jia Wei, Linghua Yang, Xia Wang, Zhengfeng Cao, Chuanjie Wang, Haowen Cheng, Bo Luo, Zhenwu Wei, Xueyang Min
{"title":"一种新的苜蓿绿色可逆性白化突变体的鉴定","authors":"Jia Wei,&nbsp;Linghua Yang,&nbsp;Xia Wang,&nbsp;Zhengfeng Cao,&nbsp;Chuanjie Wang,&nbsp;Haowen Cheng,&nbsp;Bo Luo,&nbsp;Zhenwu Wei,&nbsp;Xueyang Min","doi":"10.1016/j.jplph.2025.154452","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature-sensitive leaf color mutants are ideal materials for studying photosynthetic pigment biosynthesis and corresponding response mechanisms under heat stress. Here, we provide the first report of albinism occurrence in alfalfa and characterize the high-temperature albino regreen (<em>har</em>) mutant of alfalfa, which presents albino leaves when exposed to temperatures ≥35 °C and is not specific to developmental stage. Genetic analysis demonstrated that the albino trait exhibits dominant inheritance. Agronomic trait evaluations revealed that the <em>har</em> mutants were slightly but negatively affected by albinism. However, under high temperature, albino leaves had a severe negative effect on the photosynthesis-related traits of <em>har</em> mutants. Cytological analysis revealed that the albino leaf cells contained disintegrated chloroplasts, suggesting a defect in chloroplast development. Moreover, this study involved a comprehensive investigation of the enzymes associated with the photosynthetic pigment biosynthetic pathway of the <em>har</em> mutant under high-temperature stress using RNA sequencing. Notably, high-temperature-induced differential leaf color traits in alfalfa result in distinct photosynthetic pigment biosynthetic pathways. Twelve key regulatory genes involved in the chlorophyll biosynthesis and degradation pathways, as well as four key regulatory genes involved in carotenoid biosynthesis pathways, were identified. Our study aims to provide a theoretical foundation for further research into the intrinsic mechanisms underlying albino leaves in alfalfa <em>har</em> mutants subjected to high-temperature stress and for the breeding of new germplasms with desirable pigmented leaves.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"306 ","pages":"Article 154452"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a novel green-revertible albino mutant in alfalfa (Medicago sativa L.)\",\"authors\":\"Jia Wei,&nbsp;Linghua Yang,&nbsp;Xia Wang,&nbsp;Zhengfeng Cao,&nbsp;Chuanjie Wang,&nbsp;Haowen Cheng,&nbsp;Bo Luo,&nbsp;Zhenwu Wei,&nbsp;Xueyang Min\",\"doi\":\"10.1016/j.jplph.2025.154452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-temperature-sensitive leaf color mutants are ideal materials for studying photosynthetic pigment biosynthesis and corresponding response mechanisms under heat stress. Here, we provide the first report of albinism occurrence in alfalfa and characterize the high-temperature albino regreen (<em>har</em>) mutant of alfalfa, which presents albino leaves when exposed to temperatures ≥35 °C and is not specific to developmental stage. Genetic analysis demonstrated that the albino trait exhibits dominant inheritance. Agronomic trait evaluations revealed that the <em>har</em> mutants were slightly but negatively affected by albinism. However, under high temperature, albino leaves had a severe negative effect on the photosynthesis-related traits of <em>har</em> mutants. Cytological analysis revealed that the albino leaf cells contained disintegrated chloroplasts, suggesting a defect in chloroplast development. Moreover, this study involved a comprehensive investigation of the enzymes associated with the photosynthetic pigment biosynthetic pathway of the <em>har</em> mutant under high-temperature stress using RNA sequencing. Notably, high-temperature-induced differential leaf color traits in alfalfa result in distinct photosynthetic pigment biosynthetic pathways. Twelve key regulatory genes involved in the chlorophyll biosynthesis and degradation pathways, as well as four key regulatory genes involved in carotenoid biosynthesis pathways, were identified. Our study aims to provide a theoretical foundation for further research into the intrinsic mechanisms underlying albino leaves in alfalfa <em>har</em> mutants subjected to high-temperature stress and for the breeding of new germplasms with desirable pigmented leaves.</div></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"306 \",\"pages\":\"Article 154452\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161725000343\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161725000343","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高温敏感叶色突变体是研究热胁迫下光合色素生物合成及其响应机制的理想材料。本文首次报道了苜蓿发生白化的情况,并对苜蓿高温白化绿(har)突变体进行了表征,该突变体在温度≥35℃时呈现白化叶片,且不局限于发育阶段。遗传分析表明,白化性状表现为显性遗传。农艺性状评价显示,这些突变体受白化病影响轻微,但有负向影响。然而,在高温下,白化叶片对突变体光合作用相关性状有严重的负面影响。细胞学分析表明,白化叶片细胞中含有分裂的叶绿体,表明叶绿体发育有缺陷。此外,本研究还利用RNA测序技术对高温胁迫下har突变体光合色素生物合成途径相关酶进行了全面研究。值得注意的是,高温诱导的紫花苜蓿不同的叶片颜色性状导致了不同的光合色素生物合成途径。鉴定出12个参与叶绿素合成和降解途径的关键调控基因,以及4个参与类胡萝卜素生物合成途径的关键调控基因。本研究旨在为进一步研究高温胁迫下紫花苜蓿突变体白化叶片的内在机制和选育具有理想色素叶片的新种质提供理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of a novel green-revertible albino mutant in alfalfa (Medicago sativa L.)
High-temperature-sensitive leaf color mutants are ideal materials for studying photosynthetic pigment biosynthesis and corresponding response mechanisms under heat stress. Here, we provide the first report of albinism occurrence in alfalfa and characterize the high-temperature albino regreen (har) mutant of alfalfa, which presents albino leaves when exposed to temperatures ≥35 °C and is not specific to developmental stage. Genetic analysis demonstrated that the albino trait exhibits dominant inheritance. Agronomic trait evaluations revealed that the har mutants were slightly but negatively affected by albinism. However, under high temperature, albino leaves had a severe negative effect on the photosynthesis-related traits of har mutants. Cytological analysis revealed that the albino leaf cells contained disintegrated chloroplasts, suggesting a defect in chloroplast development. Moreover, this study involved a comprehensive investigation of the enzymes associated with the photosynthetic pigment biosynthetic pathway of the har mutant under high-temperature stress using RNA sequencing. Notably, high-temperature-induced differential leaf color traits in alfalfa result in distinct photosynthetic pigment biosynthetic pathways. Twelve key regulatory genes involved in the chlorophyll biosynthesis and degradation pathways, as well as four key regulatory genes involved in carotenoid biosynthesis pathways, were identified. Our study aims to provide a theoretical foundation for further research into the intrinsic mechanisms underlying albino leaves in alfalfa har mutants subjected to high-temperature stress and for the breeding of new germplasms with desirable pigmented leaves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of plant physiology
Journal of plant physiology 生物-植物科学
CiteScore
7.20
自引率
4.70%
发文量
196
审稿时长
32 days
期刊介绍: The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication. The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信