Mehran Ashouri-Sanjani , Reza Rahmati , Mahdi Hamidinejad , Chul B. Park
{"title":"宽带高吸收电磁屏蔽用柔性三层石墨烯复合材料","authors":"Mehran Ashouri-Sanjani , Reza Rahmati , Mahdi Hamidinejad , Chul B. Park","doi":"10.1016/j.compscitech.2025.111108","DOIUrl":null,"url":null,"abstract":"<div><div>Electromagnetic interference (EMI) presents significant challenges in today's electronics, disrupting device performance and posing health risks. We introduce a novel flexible composite with exceptional EMI shielding effectiveness and absorption-dominated performance across the Ku-band (12.4–18 GHz). The composite features a strategically engineered triple-layer architecture: two layers of reduced graphene oxide (rGO) aerogels with aligned porosities and a dense rGO film, all embedded within a polydimethylsiloxane (PDMS) matrix. This design achieves an outstanding average absorptivity of 95.4 % and a total shielding effectiveness of 42.6 dB within a minimal thickness of 2.5 mm. The superior performance arises from meticulous tuning of each layer's electrical conductivity, optimizing impedance matching and enhancing electromagnetic absorption through multiple reflection and scattering mechanisms. Finite element method simulations elucidate the electromagnetic interactions within the multilayer structure, confirming the effectiveness of our design. This work pioneers the development of next-generation EMI shielding materials that synergistically combine high absorptivity, mechanical flexibility, and robust performance, meeting the demanding requirements of modern electronics.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"263 ","pages":"Article 111108"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible triple-layer graphene composites for broadband high-absorption electromagnetic shielding\",\"authors\":\"Mehran Ashouri-Sanjani , Reza Rahmati , Mahdi Hamidinejad , Chul B. Park\",\"doi\":\"10.1016/j.compscitech.2025.111108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electromagnetic interference (EMI) presents significant challenges in today's electronics, disrupting device performance and posing health risks. We introduce a novel flexible composite with exceptional EMI shielding effectiveness and absorption-dominated performance across the Ku-band (12.4–18 GHz). The composite features a strategically engineered triple-layer architecture: two layers of reduced graphene oxide (rGO) aerogels with aligned porosities and a dense rGO film, all embedded within a polydimethylsiloxane (PDMS) matrix. This design achieves an outstanding average absorptivity of 95.4 % and a total shielding effectiveness of 42.6 dB within a minimal thickness of 2.5 mm. The superior performance arises from meticulous tuning of each layer's electrical conductivity, optimizing impedance matching and enhancing electromagnetic absorption through multiple reflection and scattering mechanisms. Finite element method simulations elucidate the electromagnetic interactions within the multilayer structure, confirming the effectiveness of our design. This work pioneers the development of next-generation EMI shielding materials that synergistically combine high absorptivity, mechanical flexibility, and robust performance, meeting the demanding requirements of modern electronics.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"263 \",\"pages\":\"Article 111108\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353825000764\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825000764","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Flexible triple-layer graphene composites for broadband high-absorption electromagnetic shielding
Electromagnetic interference (EMI) presents significant challenges in today's electronics, disrupting device performance and posing health risks. We introduce a novel flexible composite with exceptional EMI shielding effectiveness and absorption-dominated performance across the Ku-band (12.4–18 GHz). The composite features a strategically engineered triple-layer architecture: two layers of reduced graphene oxide (rGO) aerogels with aligned porosities and a dense rGO film, all embedded within a polydimethylsiloxane (PDMS) matrix. This design achieves an outstanding average absorptivity of 95.4 % and a total shielding effectiveness of 42.6 dB within a minimal thickness of 2.5 mm. The superior performance arises from meticulous tuning of each layer's electrical conductivity, optimizing impedance matching and enhancing electromagnetic absorption through multiple reflection and scattering mechanisms. Finite element method simulations elucidate the electromagnetic interactions within the multilayer structure, confirming the effectiveness of our design. This work pioneers the development of next-generation EMI shielding materials that synergistically combine high absorptivity, mechanical flexibility, and robust performance, meeting the demanding requirements of modern electronics.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.