巴塔哥尼亚Albian Cerro Castaño段喷发间河流砂岩的多物源研究

IF 1.7 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
A. Martín Umazano , Pablo M. Villegas , Mauro I. Bernardi , Leandro J. Amodeo , Bruno C. Rosso
{"title":"巴塔哥尼亚Albian Cerro Castaño段喷发间河流砂岩的多物源研究","authors":"A. Martín Umazano ,&nbsp;Pablo M. Villegas ,&nbsp;Mauro I. Bernardi ,&nbsp;Leandro J. Amodeo ,&nbsp;Bruno C. Rosso","doi":"10.1016/j.jsames.2025.105423","DOIUrl":null,"url":null,"abstract":"<div><div>The Albian Cerro Castaño Member is a volcanogenic fluvial-alluvial succession deposited in the Somuncurá-Cañadón Asfalto Basin, extra-Andean Patagonia, Argentina. During the deposition of the unit, the basin was affected by recurrent volcaniclastic inputs from sources including either directly active volcanoes or secondary volcanogenic material from upstream positions. In this study, we analyzed the provenance of fluvial sandstones of the Albian Cerro Castaño Member, for which detailed palaeoenvironmental interpretations have been previously established suggesting accumulation during inter-eruptive phases. The methodologies included the petrographic analysis of thirty-seven thin sections with the definition of petrofacies, as well as U-Pb zircon dating of a tuff layer from the underlying stratigraphic unit, located approximately 2 m below the contact with the Cerro Castaño succession. The new U-Pb depositional-crystallization age of 114.86 ± 0.44/0.56 Ma is consistent with the previous geochronological framework and constrains the Cerro Castaño Member to the Albian. The fluvial sandstones are predominantly composed of volcanic lithic framework grains both effusive and volcaniclastic, spanning the acidic to basic geochemical spectrum, with subordinate quartz, feldspars, intraclasts, micas, olivines, pyroxenes, amphiboles, and opaques. They were classified as feldspatho-lithic to quartzo-lithic, indicating provenance from tectonic settings associated with arc (both undissected and transitional) and recycled orogen sources. Four lithic petrofacies, designated A to D, were identified to distinguish sediment sources. The data indicate that the majority of samples from the western sector of the study zone are derived from volcanic rocks with effusive and explosive origin, with a minor contribution from mafic to intermediate volcanic rocks (petrofacies A). In contrast, samples from the eastern sector indicate a source-rock lithology dominated by siliceous rocks, similarly formed by effusive and pyroclastic eruptions but with minimal input from mafic to intermediate volcanic sources (petrofacies B). Additionally, specific samples from the western basin sector display a significant contribution of volcanic lithic grains, likely indicating substantial contributions of siliceous volcaniclastic sediments (petrofacies C and D). The combination of the information obtained with the literature data set, primarily comprising paleocurrents and paleogeological reconstructions, led to the conclusion that the principal source rocks are Jurassic intraplate volcanites, which are extensively distributed in extra-Andean Patagonia. In particular, the rocks of the Lonco Trapial and Marifil Formations constitute the main sources for sandstones in the western and eastern sectors of study zone, respectively. Furthermore, in the western localities, the subordinate participation of the Paleozoic-Triassic crystalline basement as source rocks was identified, as well as the probable contribution of intrabasinal Jurassic volcanites.</div></div>","PeriodicalId":50047,"journal":{"name":"Journal of South American Earth Sciences","volume":"155 ","pages":"Article 105423"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple provenance of inter-eruptive fluvial sandstones of the Albian Cerro Castaño Member, Patagonia\",\"authors\":\"A. Martín Umazano ,&nbsp;Pablo M. Villegas ,&nbsp;Mauro I. Bernardi ,&nbsp;Leandro J. Amodeo ,&nbsp;Bruno C. Rosso\",\"doi\":\"10.1016/j.jsames.2025.105423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Albian Cerro Castaño Member is a volcanogenic fluvial-alluvial succession deposited in the Somuncurá-Cañadón Asfalto Basin, extra-Andean Patagonia, Argentina. During the deposition of the unit, the basin was affected by recurrent volcaniclastic inputs from sources including either directly active volcanoes or secondary volcanogenic material from upstream positions. In this study, we analyzed the provenance of fluvial sandstones of the Albian Cerro Castaño Member, for which detailed palaeoenvironmental interpretations have been previously established suggesting accumulation during inter-eruptive phases. The methodologies included the petrographic analysis of thirty-seven thin sections with the definition of petrofacies, as well as U-Pb zircon dating of a tuff layer from the underlying stratigraphic unit, located approximately 2 m below the contact with the Cerro Castaño succession. The new U-Pb depositional-crystallization age of 114.86 ± 0.44/0.56 Ma is consistent with the previous geochronological framework and constrains the Cerro Castaño Member to the Albian. The fluvial sandstones are predominantly composed of volcanic lithic framework grains both effusive and volcaniclastic, spanning the acidic to basic geochemical spectrum, with subordinate quartz, feldspars, intraclasts, micas, olivines, pyroxenes, amphiboles, and opaques. They were classified as feldspatho-lithic to quartzo-lithic, indicating provenance from tectonic settings associated with arc (both undissected and transitional) and recycled orogen sources. Four lithic petrofacies, designated A to D, were identified to distinguish sediment sources. The data indicate that the majority of samples from the western sector of the study zone are derived from volcanic rocks with effusive and explosive origin, with a minor contribution from mafic to intermediate volcanic rocks (petrofacies A). In contrast, samples from the eastern sector indicate a source-rock lithology dominated by siliceous rocks, similarly formed by effusive and pyroclastic eruptions but with minimal input from mafic to intermediate volcanic sources (petrofacies B). Additionally, specific samples from the western basin sector display a significant contribution of volcanic lithic grains, likely indicating substantial contributions of siliceous volcaniclastic sediments (petrofacies C and D). The combination of the information obtained with the literature data set, primarily comprising paleocurrents and paleogeological reconstructions, led to the conclusion that the principal source rocks are Jurassic intraplate volcanites, which are extensively distributed in extra-Andean Patagonia. In particular, the rocks of the Lonco Trapial and Marifil Formations constitute the main sources for sandstones in the western and eastern sectors of study zone, respectively. Furthermore, in the western localities, the subordinate participation of the Paleozoic-Triassic crystalline basement as source rocks was identified, as well as the probable contribution of intrabasinal Jurassic volcanites.</div></div>\",\"PeriodicalId\":50047,\"journal\":{\"name\":\"Journal of South American Earth Sciences\",\"volume\":\"155 \",\"pages\":\"Article 105423\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of South American Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895981125000859\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of South American Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895981125000859","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Albian Cerro Castaño成员是沉积在阿根廷安第斯山脉外巴塔哥尼亚Somuncurá-Cañadón Asfalto盆地的火山成因河流冲积层。在单元沉积期间,盆地受到来自直接活火山或来自上游位置的次级火山物质的反复火山碎屑输入的影响。在本研究中,我们分析了Albian Cerro Castaño段河流砂岩的物源,此前已经建立了详细的古环境解释,表明其在喷发间阶段积聚。方法包括对37个薄片进行岩石学分析,并对岩相进行定义,以及对位于Cerro Castaño地层接触层约2米以下的下伏地层单元的凝灰岩层进行U-Pb锆石定年。新的U-Pb沉积结晶年龄为114.86±0.44/0.56 Ma,与前人的地质年代学框架一致,将Cerro Castaño段限定在Albian。河流砂岩主要由火山岩屑骨架颗粒组成,包括喷涌型和火山碎屑型,具有酸性到碱性的地球化学特征,其次为石英、长石、内碎屑、云母、橄榄石、辉石、角闪石和不透明岩。它们被划分为长石岩屑和石英岩屑,表明物源来自与弧(包括未断裂的和过渡的)和再循环造山带有关的构造环境。确定了A ~ D四种岩屑岩相,以区分沉积物来源。研究区西段烃源岩岩性以喷流型和爆炸型火山岩为主,基性—中质火山岩(a岩相)占少量。东段烃源岩岩性以硅质岩为主。同样是由溢流和火山碎屑喷发形成的,但基性到中间火山源(岩相B)的输入很少。此外,来自西部盆地部分的特定样本显示火山岩屑颗粒的贡献很大,可能表明硅质火山碎屑沉积物(岩相C和D)的贡献很大。主要由古流和古地质重建组成,认为主要烃源岩为侏罗纪板内火山岩,广泛分布于安第斯山脉外的巴塔哥尼亚。其中,东段和西段Lonco Trapial组和Marifil组分别是主要的砂岩源。在西部地区,确定了古生代—三叠纪结晶基底作为烃源岩的次要参与作用,以及基底内侏罗纪火山岩的可能贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple provenance of inter-eruptive fluvial sandstones of the Albian Cerro Castaño Member, Patagonia
The Albian Cerro Castaño Member is a volcanogenic fluvial-alluvial succession deposited in the Somuncurá-Cañadón Asfalto Basin, extra-Andean Patagonia, Argentina. During the deposition of the unit, the basin was affected by recurrent volcaniclastic inputs from sources including either directly active volcanoes or secondary volcanogenic material from upstream positions. In this study, we analyzed the provenance of fluvial sandstones of the Albian Cerro Castaño Member, for which detailed palaeoenvironmental interpretations have been previously established suggesting accumulation during inter-eruptive phases. The methodologies included the petrographic analysis of thirty-seven thin sections with the definition of petrofacies, as well as U-Pb zircon dating of a tuff layer from the underlying stratigraphic unit, located approximately 2 m below the contact with the Cerro Castaño succession. The new U-Pb depositional-crystallization age of 114.86 ± 0.44/0.56 Ma is consistent with the previous geochronological framework and constrains the Cerro Castaño Member to the Albian. The fluvial sandstones are predominantly composed of volcanic lithic framework grains both effusive and volcaniclastic, spanning the acidic to basic geochemical spectrum, with subordinate quartz, feldspars, intraclasts, micas, olivines, pyroxenes, amphiboles, and opaques. They were classified as feldspatho-lithic to quartzo-lithic, indicating provenance from tectonic settings associated with arc (both undissected and transitional) and recycled orogen sources. Four lithic petrofacies, designated A to D, were identified to distinguish sediment sources. The data indicate that the majority of samples from the western sector of the study zone are derived from volcanic rocks with effusive and explosive origin, with a minor contribution from mafic to intermediate volcanic rocks (petrofacies A). In contrast, samples from the eastern sector indicate a source-rock lithology dominated by siliceous rocks, similarly formed by effusive and pyroclastic eruptions but with minimal input from mafic to intermediate volcanic sources (petrofacies B). Additionally, specific samples from the western basin sector display a significant contribution of volcanic lithic grains, likely indicating substantial contributions of siliceous volcaniclastic sediments (petrofacies C and D). The combination of the information obtained with the literature data set, primarily comprising paleocurrents and paleogeological reconstructions, led to the conclusion that the principal source rocks are Jurassic intraplate volcanites, which are extensively distributed in extra-Andean Patagonia. In particular, the rocks of the Lonco Trapial and Marifil Formations constitute the main sources for sandstones in the western and eastern sectors of study zone, respectively. Furthermore, in the western localities, the subordinate participation of the Paleozoic-Triassic crystalline basement as source rocks was identified, as well as the probable contribution of intrabasinal Jurassic volcanites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of South American Earth Sciences
Journal of South American Earth Sciences 地学-地球科学综合
CiteScore
3.70
自引率
22.20%
发文量
364
审稿时长
6-12 weeks
期刊介绍: Papers must have a regional appeal and should present work of more than local significance. Research papers dealing with the regional geology of South American cratons and mobile belts, within the following research fields: -Economic geology, metallogenesis and hydrocarbon genesis and reservoirs. -Geophysics, geochemistry, volcanology, igneous and metamorphic petrology. -Tectonics, neo- and seismotectonics and geodynamic modeling. -Geomorphology, geological hazards, environmental geology, climate change in America and Antarctica, and soil research. -Stratigraphy, sedimentology, structure and basin evolution. -Paleontology, paleoecology, paleoclimatology and Quaternary geology. New developments in already established regional projects and new initiatives dealing with the geology of the continent will be summarized and presented on a regular basis. Short notes, discussions, book reviews and conference and workshop reports will also be included when relevant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信