通过调整导能结构,实现CF/环氧树脂接头的高效超声焊接,提高接头强度

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING
Jiaming Liu , Dong Quan , Jiaying Pan , Xuemin Wang , Xi Yang , Guoqun Zhao
{"title":"通过调整导能结构,实现CF/环氧树脂接头的高效超声焊接,提高接头强度","authors":"Jiaming Liu ,&nbsp;Dong Quan ,&nbsp;Jiaying Pan ,&nbsp;Xuemin Wang ,&nbsp;Xi Yang ,&nbsp;Guoqun Zhao","doi":"10.1016/j.compositesa.2025.108799","DOIUrl":null,"url":null,"abstract":"<div><div>Encouraging advancement in the ultrasonic welding of thermoset composites (TSCs) was recently achieved by co-curing weldable thermoplastic coupling layers (CLs) onto their surfaces. However, obvious temperature inhomogeneity at the welding interface easily leads to thermally decomposition of epoxy matrix and irreparable defects in the welds. This study proposed a strategy for producing high-quality ultrasonically-welded TSC joints by utilizing novel-structured thermoplastic meshes as energy directors (EDs). Compared to prevalent film EDs, the usage of mesh EDs significantly promoted the heat generation efficiency and temperature distribution uniformity at welding interfaces. The maximum temperature of TSCs reached during welding processes decreased from 373.7 °C to 216.7 °C with reduced welding time by 32.4 %. These phenomena effectively prevented thermally decomposed epoxy matrix, and resulted in high-quality welding lines with remarkable lap-shear strength, i.e. reaching a maximum value of 31.1 MPa. Overall, this study presents a promising strategy for developing robust TSC joints by tailoring ED structures.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"192 ","pages":"Article 108799"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-efficiency ultrasonic welding of CF/epoxy joints with enhanced strength upon tailoring the energy director structure\",\"authors\":\"Jiaming Liu ,&nbsp;Dong Quan ,&nbsp;Jiaying Pan ,&nbsp;Xuemin Wang ,&nbsp;Xi Yang ,&nbsp;Guoqun Zhao\",\"doi\":\"10.1016/j.compositesa.2025.108799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Encouraging advancement in the ultrasonic welding of thermoset composites (TSCs) was recently achieved by co-curing weldable thermoplastic coupling layers (CLs) onto their surfaces. However, obvious temperature inhomogeneity at the welding interface easily leads to thermally decomposition of epoxy matrix and irreparable defects in the welds. This study proposed a strategy for producing high-quality ultrasonically-welded TSC joints by utilizing novel-structured thermoplastic meshes as energy directors (EDs). Compared to prevalent film EDs, the usage of mesh EDs significantly promoted the heat generation efficiency and temperature distribution uniformity at welding interfaces. The maximum temperature of TSCs reached during welding processes decreased from 373.7 °C to 216.7 °C with reduced welding time by 32.4 %. These phenomena effectively prevented thermally decomposed epoxy matrix, and resulted in high-quality welding lines with remarkable lap-shear strength, i.e. reaching a maximum value of 31.1 MPa. Overall, this study presents a promising strategy for developing robust TSC joints by tailoring ED structures.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"192 \",\"pages\":\"Article 108799\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X25000934\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25000934","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

通过在热固性复合材料表面共固化可焊热塑性偶联层(CLs),热固性复合材料(tsc)的超声波焊接取得了令人鼓舞的进展。然而,焊接界面处明显的温度不均匀性容易导致环氧基热分解,导致焊缝出现不可修复的缺陷。本研究提出了一种利用新型结构热塑性网格作为能量引导器(EDs)生产高质量超声焊接TSC接头的策略。与现有的薄膜EDs相比,网状EDs的使用显著提高了焊接界面的产热效率和温度分布均匀性。焊接过程中tsc的最高温度从373.7℃降至216.7℃,焊接时间缩短了32.4%。这些现象有效地防止了环氧树脂基体的热分解,从而获得了高质量的焊缝,焊缝的搭剪强度显著,最高可达31.1 MPa。总的来说,这项研究提出了一种有前途的策略,通过定制ED结构来开发坚固的TSC关节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-efficiency ultrasonic welding of CF/epoxy joints with enhanced strength upon tailoring the energy director structure

High-efficiency ultrasonic welding of CF/epoxy joints with enhanced strength upon tailoring the energy director structure
Encouraging advancement in the ultrasonic welding of thermoset composites (TSCs) was recently achieved by co-curing weldable thermoplastic coupling layers (CLs) onto their surfaces. However, obvious temperature inhomogeneity at the welding interface easily leads to thermally decomposition of epoxy matrix and irreparable defects in the welds. This study proposed a strategy for producing high-quality ultrasonically-welded TSC joints by utilizing novel-structured thermoplastic meshes as energy directors (EDs). Compared to prevalent film EDs, the usage of mesh EDs significantly promoted the heat generation efficiency and temperature distribution uniformity at welding interfaces. The maximum temperature of TSCs reached during welding processes decreased from 373.7 °C to 216.7 °C with reduced welding time by 32.4 %. These phenomena effectively prevented thermally decomposed epoxy matrix, and resulted in high-quality welding lines with remarkable lap-shear strength, i.e. reaching a maximum value of 31.1 MPa. Overall, this study presents a promising strategy for developing robust TSC joints by tailoring ED structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信