{"title":"f(Q,Lm)引力中重力生成的新方法及其宇宙学意义","authors":"Amit Samaddar, S. Surendra Singh","doi":"10.1016/j.nuclphysb.2025.116834","DOIUrl":null,"url":null,"abstract":"<div><div>We present an examination of the <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> gravity model, in which the functional form <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>α</mi><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>β</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is postulated and discuss its potential impact on cosmological dynamics and the phenomenon of gravitational baryogenesis. Combining observational insights from Hubble, BAO and pantheon datasets, we conduct a comprehensive analysis to constrain the model's parameters and determine the baryon-to-entropy ratio <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>, providing valuable insights into the model's performance and cosmological implications. In the context of baryogenesis and generalized gravitational baryogenesis, we show that setting <span><math><mi>n</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> leads to a mathematical inconsistency due to the presence of a division by zero arising from the factor <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo></math></span> in the denominators. By looking closely at how <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac></math></span> changes with <em>n</em> and <em>β</em>, we show that our model predicts a baryon-to-entropy ratio that is both positive and in line with the highest value seen so far, which is <span><math><mn>9.42</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></math></span> for <span><math><mn>1.32965</mn><mo><</mo><mi>n</mi><mo><</mo><mn>1.39252</mn></math></span>, and this value is right for both <em>β</em> and <em>n</em>, with <span><math><mi>α</mi><mo>≃</mo><mo>−</mo><mn>1.95084</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>86</mn></mrow></msup></math></span>. The excellent agreement between our model's predictions and the pantheon dataset demonstrates the model's capacity to accurately describe the physics of baryogenesis and its ability to reproduce the observed features of the cosmological data, showcasing its potential as a reliable tool for understanding the evolution of the Universe.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1012 ","pages":"Article 116834"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach to baryogenesis in f(Q,Lm) gravity and its cosmological implications\",\"authors\":\"Amit Samaddar, S. Surendra Singh\",\"doi\":\"10.1016/j.nuclphysb.2025.116834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present an examination of the <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> gravity model, in which the functional form <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>α</mi><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>β</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is postulated and discuss its potential impact on cosmological dynamics and the phenomenon of gravitational baryogenesis. Combining observational insights from Hubble, BAO and pantheon datasets, we conduct a comprehensive analysis to constrain the model's parameters and determine the baryon-to-entropy ratio <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>, providing valuable insights into the model's performance and cosmological implications. In the context of baryogenesis and generalized gravitational baryogenesis, we show that setting <span><math><mi>n</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> leads to a mathematical inconsistency due to the presence of a division by zero arising from the factor <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo></math></span> in the denominators. By looking closely at how <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac></math></span> changes with <em>n</em> and <em>β</em>, we show that our model predicts a baryon-to-entropy ratio that is both positive and in line with the highest value seen so far, which is <span><math><mn>9.42</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></math></span> for <span><math><mn>1.32965</mn><mo><</mo><mi>n</mi><mo><</mo><mn>1.39252</mn></math></span>, and this value is right for both <em>β</em> and <em>n</em>, with <span><math><mi>α</mi><mo>≃</mo><mo>−</mo><mn>1.95084</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>86</mn></mrow></msup></math></span>. The excellent agreement between our model's predictions and the pantheon dataset demonstrates the model's capacity to accurately describe the physics of baryogenesis and its ability to reproduce the observed features of the cosmological data, showcasing its potential as a reliable tool for understanding the evolution of the Universe.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1012 \",\"pages\":\"Article 116834\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325000446\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325000446","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
A novel approach to baryogenesis in f(Q,Lm) gravity and its cosmological implications
We present an examination of the gravity model, in which the functional form is postulated and discuss its potential impact on cosmological dynamics and the phenomenon of gravitational baryogenesis. Combining observational insights from Hubble, BAO and pantheon datasets, we conduct a comprehensive analysis to constrain the model's parameters and determine the baryon-to-entropy ratio , providing valuable insights into the model's performance and cosmological implications. In the context of baryogenesis and generalized gravitational baryogenesis, we show that setting leads to a mathematical inconsistency due to the presence of a division by zero arising from the factor in the denominators. By looking closely at how changes with n and β, we show that our model predicts a baryon-to-entropy ratio that is both positive and in line with the highest value seen so far, which is for , and this value is right for both β and n, with . The excellent agreement between our model's predictions and the pantheon dataset demonstrates the model's capacity to accurately describe the physics of baryogenesis and its ability to reproduce the observed features of the cosmological data, showcasing its potential as a reliable tool for understanding the evolution of the Universe.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.