{"title":"中国京津冀地区人工湿地综述:水处理中的应用、问题和实际解决方案","authors":"Lijie Wang , Xuemin Dai , Tao Zhang , Chao Chi","doi":"10.1016/j.ecoleng.2025.107568","DOIUrl":null,"url":null,"abstract":"<div><div>Constructed wetlands (CWs) are commonly employed in developing countries for wastewater treatment, owing to their environmental, economic, and social advantages. CWs remove pollutants through natural processes, offering ecosystem services and recreational benefits. However, the efficiency of pollutant removal varies due to factors such as low winter temperatures and the complexity of wastewater composition. This review examines the development and application of CWs in the Beijing-Tianjin-Hebei region of China. The relationship between CW type and wastewater treatment efficiency is explored, along with factors influencing CW performance. Based on monitoring data from 27 field-scale CWs, Hybrid Constructed Wetlands demonstrated the highest removal rates for COD (43.48 %), TN (44.79 %), and TP (51.50 %). Vertical Flow Constructed Wetlands achieved the highest NH<sub>3</sub>-N removal rate (71.25 %). Substrate selection, plant species, hydraulic retention time, and pollutant loading rates all influence CW performance. These variations in pollutant removal efficiency are primarily attributed to low dissolved oxygen, low C/N ratios, and ambient temperature. Pollutant removal efficiency can be enhanced through strategies such as intermittent aeration, tidal flow operation, supplementation with electron donor substrates, selection of cold-tolerant plants, augmentation of cold-tolerant microbes, insulation material cover, and clogging remediation. These strategies help increase pollutant removal rates and promote the sustainable operation of CWs.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"213 ","pages":"Article 107568"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on constructed wetlands in Beijing-Tianjin-Hebei region of China: Application in water treatment, problem, and practical solution\",\"authors\":\"Lijie Wang , Xuemin Dai , Tao Zhang , Chao Chi\",\"doi\":\"10.1016/j.ecoleng.2025.107568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Constructed wetlands (CWs) are commonly employed in developing countries for wastewater treatment, owing to their environmental, economic, and social advantages. CWs remove pollutants through natural processes, offering ecosystem services and recreational benefits. However, the efficiency of pollutant removal varies due to factors such as low winter temperatures and the complexity of wastewater composition. This review examines the development and application of CWs in the Beijing-Tianjin-Hebei region of China. The relationship between CW type and wastewater treatment efficiency is explored, along with factors influencing CW performance. Based on monitoring data from 27 field-scale CWs, Hybrid Constructed Wetlands demonstrated the highest removal rates for COD (43.48 %), TN (44.79 %), and TP (51.50 %). Vertical Flow Constructed Wetlands achieved the highest NH<sub>3</sub>-N removal rate (71.25 %). Substrate selection, plant species, hydraulic retention time, and pollutant loading rates all influence CW performance. These variations in pollutant removal efficiency are primarily attributed to low dissolved oxygen, low C/N ratios, and ambient temperature. Pollutant removal efficiency can be enhanced through strategies such as intermittent aeration, tidal flow operation, supplementation with electron donor substrates, selection of cold-tolerant plants, augmentation of cold-tolerant microbes, insulation material cover, and clogging remediation. These strategies help increase pollutant removal rates and promote the sustainable operation of CWs.</div></div>\",\"PeriodicalId\":11490,\"journal\":{\"name\":\"Ecological Engineering\",\"volume\":\"213 \",\"pages\":\"Article 107568\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925857425000564\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857425000564","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
A review on constructed wetlands in Beijing-Tianjin-Hebei region of China: Application in water treatment, problem, and practical solution
Constructed wetlands (CWs) are commonly employed in developing countries for wastewater treatment, owing to their environmental, economic, and social advantages. CWs remove pollutants through natural processes, offering ecosystem services and recreational benefits. However, the efficiency of pollutant removal varies due to factors such as low winter temperatures and the complexity of wastewater composition. This review examines the development and application of CWs in the Beijing-Tianjin-Hebei region of China. The relationship between CW type and wastewater treatment efficiency is explored, along with factors influencing CW performance. Based on monitoring data from 27 field-scale CWs, Hybrid Constructed Wetlands demonstrated the highest removal rates for COD (43.48 %), TN (44.79 %), and TP (51.50 %). Vertical Flow Constructed Wetlands achieved the highest NH3-N removal rate (71.25 %). Substrate selection, plant species, hydraulic retention time, and pollutant loading rates all influence CW performance. These variations in pollutant removal efficiency are primarily attributed to low dissolved oxygen, low C/N ratios, and ambient temperature. Pollutant removal efficiency can be enhanced through strategies such as intermittent aeration, tidal flow operation, supplementation with electron donor substrates, selection of cold-tolerant plants, augmentation of cold-tolerant microbes, insulation material cover, and clogging remediation. These strategies help increase pollutant removal rates and promote the sustainable operation of CWs.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.