用田口法分析t型剥离胶粘剂接头相场时胶粘剂材料性能的影响

IF 3.2 3区 材料科学 Q2 ENGINEERING, CHEMICAL
Cengiz Görkem Dengiz
{"title":"用田口法分析t型剥离胶粘剂接头相场时胶粘剂材料性能的影响","authors":"Cengiz Görkem Dengiz","doi":"10.1016/j.ijadhadh.2025.103977","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of variations in elastic modulus (<em>E</em>), critical energy release rate (<em>G</em><sub><em>c</em></sub>), and length scale parameters (<em>l</em><sub><em>c</em></sub>) on the failure behaviour of bimetallic T-peel joints using phase-field (PF) analysis. The PF method, recognised for its robustness, is particularly suitable for modelling interface problems and complex crack patterns. Since phase-field results are highly sensitive to material properties, this research aims to systematically evaluate the influence of these parameters using the Taguchi method. To achieve this, the PF model of T-peel joints was validated against experimental tests. The validated models were then employed in a Taguchi L9 design to quantify the effects of material parameters. A comprehensive analysis, including ANOVA and regression, was conducted to further examine these influences. Results indicate that the peak reaction force and the corresponding displacement are most significantly affected by the critical energy release rate, followed by the length scale parameter and elastic modulus. An increase in the critical energy release rate leads to a higher peak force and greater displacement at this force. Conversely, increasing the length scale parameter reduces both peak force and displacement. Interestingly, maintaining a constant ratio of <em>G</em><sub><em>c</em></sub>/<em>l</em><sub><em>c</em></sub> does not alter the joint behaviour. Additionally, higher Young's modulus enhances joint stiffness, increasing peak force but reducing displacement at this force. This study provides crucial insights into optimising the mechanical performance of bimetallic T-peel joints and underscores the importance of material properties in PF-based analyses.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"139 ","pages":"Article 103977"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of adhesive material properties on phase-field analysis of T-peel adhesive joints using the Taguchi method\",\"authors\":\"Cengiz Görkem Dengiz\",\"doi\":\"10.1016/j.ijadhadh.2025.103977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the effects of variations in elastic modulus (<em>E</em>), critical energy release rate (<em>G</em><sub><em>c</em></sub>), and length scale parameters (<em>l</em><sub><em>c</em></sub>) on the failure behaviour of bimetallic T-peel joints using phase-field (PF) analysis. The PF method, recognised for its robustness, is particularly suitable for modelling interface problems and complex crack patterns. Since phase-field results are highly sensitive to material properties, this research aims to systematically evaluate the influence of these parameters using the Taguchi method. To achieve this, the PF model of T-peel joints was validated against experimental tests. The validated models were then employed in a Taguchi L9 design to quantify the effects of material parameters. A comprehensive analysis, including ANOVA and regression, was conducted to further examine these influences. Results indicate that the peak reaction force and the corresponding displacement are most significantly affected by the critical energy release rate, followed by the length scale parameter and elastic modulus. An increase in the critical energy release rate leads to a higher peak force and greater displacement at this force. Conversely, increasing the length scale parameter reduces both peak force and displacement. Interestingly, maintaining a constant ratio of <em>G</em><sub><em>c</em></sub>/<em>l</em><sub><em>c</em></sub> does not alter the joint behaviour. Additionally, higher Young's modulus enhances joint stiffness, increasing peak force but reducing displacement at this force. This study provides crucial insights into optimising the mechanical performance of bimetallic T-peel joints and underscores the importance of material properties in PF-based analyses.</div></div>\",\"PeriodicalId\":13732,\"journal\":{\"name\":\"International Journal of Adhesion and Adhesives\",\"volume\":\"139 \",\"pages\":\"Article 103977\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adhesion and Adhesives\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143749625000442\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749625000442","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用相场分析(PF)研究了弹性模量(E)、临界能量释放率(Gc)和长度尺度参数(lc)的变化对双金属t型剥离节点破坏行为的影响。PF方法以其鲁棒性而闻名,特别适用于界面问题和复杂裂纹模式的建模。由于相场结果对材料性质高度敏感,本研究旨在采用田口方法系统地评估这些参数的影响。为此,对t型剥离节点的PF模型进行了实验验证。然后将验证模型应用于田口L9设计中,以量化材料参数的影响。综合分析,包括方差分析和回归,进行了进一步检查这些影响。结果表明,临界能量释放率对峰值反力和相应位移的影响最为显著,其次是长度尺度参数和弹性模量。临界能量释放率的增加导致更高的峰值力和更大的位移。反之,增加长度尺度参数会降低峰值力和位移。有趣的是,保持一定的Gc/lc比不会改变接头的行为。此外,较高的杨氏模量提高了关节刚度,增加了峰值力,但减少了该力下的位移。该研究为优化双金属t型剥离接头的力学性能提供了重要见解,并强调了基于pf的分析中材料性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of adhesive material properties on phase-field analysis of T-peel adhesive joints using the Taguchi method
This study investigates the effects of variations in elastic modulus (E), critical energy release rate (Gc), and length scale parameters (lc) on the failure behaviour of bimetallic T-peel joints using phase-field (PF) analysis. The PF method, recognised for its robustness, is particularly suitable for modelling interface problems and complex crack patterns. Since phase-field results are highly sensitive to material properties, this research aims to systematically evaluate the influence of these parameters using the Taguchi method. To achieve this, the PF model of T-peel joints was validated against experimental tests. The validated models were then employed in a Taguchi L9 design to quantify the effects of material parameters. A comprehensive analysis, including ANOVA and regression, was conducted to further examine these influences. Results indicate that the peak reaction force and the corresponding displacement are most significantly affected by the critical energy release rate, followed by the length scale parameter and elastic modulus. An increase in the critical energy release rate leads to a higher peak force and greater displacement at this force. Conversely, increasing the length scale parameter reduces both peak force and displacement. Interestingly, maintaining a constant ratio of Gc/lc does not alter the joint behaviour. Additionally, higher Young's modulus enhances joint stiffness, increasing peak force but reducing displacement at this force. This study provides crucial insights into optimising the mechanical performance of bimetallic T-peel joints and underscores the importance of material properties in PF-based analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Adhesion and Adhesives
International Journal of Adhesion and Adhesives 工程技术-材料科学:综合
CiteScore
6.90
自引率
8.80%
发文量
200
审稿时长
8.3 months
期刊介绍: The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信