Wilf类用于弱上升序列,避免一对或三个长度为3的模式

IF 0.7 3区 数学 Q2 MATHEMATICS
David Callan , Toufik Mansour
{"title":"Wilf类用于弱上升序列,避免一对或三个长度为3的模式","authors":"David Callan ,&nbsp;Toufik Mansour","doi":"10.1016/j.disc.2025.114438","DOIUrl":null,"url":null,"abstract":"<div><div>A <em>weak ascent sequence</em> is a word <span><math><mi>π</mi><mo>=</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over the set of nonnegative integers such that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mn>1</mn><mo>+</mo><mrow><mtext>weak</mtext><mi>_</mi><mtext>asc</mtext></mrow><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>, where <span><math><mrow><mtext>weak</mtext><mi>_</mi><mtext>asc</mtext></mrow><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> is the number of <em>weak ascents</em> in the word <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, that is, the number of two-entry factors <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> such that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Here we obtain some enumerative results for weak ascent sequences avoiding a set of two or three 3-letter patterns, leading to a conjecture for the number of Wilf equivalence classes for weak ascent sequences avoiding a pair (respectively, triple) of 3-letter patterns. The main tool is the use of generating trees. Some cases are treated using bijective methods.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114438"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wilf classes for weak ascent sequences avoiding a pair or triple of length-3 patterns\",\"authors\":\"David Callan ,&nbsp;Toufik Mansour\",\"doi\":\"10.1016/j.disc.2025.114438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <em>weak ascent sequence</em> is a word <span><math><mi>π</mi><mo>=</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over the set of nonnegative integers such that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mn>1</mn><mo>+</mo><mrow><mtext>weak</mtext><mi>_</mi><mtext>asc</mtext></mrow><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>, where <span><math><mrow><mtext>weak</mtext><mi>_</mi><mtext>asc</mtext></mrow><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> is the number of <em>weak ascents</em> in the word <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, that is, the number of two-entry factors <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> such that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Here we obtain some enumerative results for weak ascent sequences avoiding a set of two or three 3-letter patterns, leading to a conjecture for the number of Wilf equivalence classes for weak ascent sequences avoiding a pair (respectively, triple) of 3-letter patterns. The main tool is the use of generating trees. Some cases are treated using bijective methods.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 6\",\"pages\":\"Article 114438\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25000469\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000469","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

弱上升数列是π=π1π2, πi≤1+weak_asc(π1π2, πi - 1),其中weak_asc(π1π2, πi - 1)是π1π2, πm中弱上升的个数,即πj≤πj+1的两项因子πjπj+1的个数。本文给出了避免两个或三个3字母模式的弱上升序列的一些枚举结果,并由此提出了避免一对(分别为三个)3字母模式的弱上升序列的Wilf等价类的个数的猜想。主要的工具是使用生成树。有些病例是用客观方法治疗的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wilf classes for weak ascent sequences avoiding a pair or triple of length-3 patterns
A weak ascent sequence is a word π=π1π2πn over the set of nonnegative integers such that π1=0 and πi1+weak_asc(π1π2πi1) for i=2,,n, where weak_asc(π1π2πm) is the number of weak ascents in the word π1π2πm, that is, the number of two-entry factors πjπj+1 such that πjπj+1. Here we obtain some enumerative results for weak ascent sequences avoiding a set of two or three 3-letter patterns, leading to a conjecture for the number of Wilf equivalence classes for weak ascent sequences avoiding a pair (respectively, triple) of 3-letter patterns. The main tool is the use of generating trees. Some cases are treated using bijective methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信