强化转鼓式生物反应器,利用农用工业废渣固态培养生产纤维素酶

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Lina María Grajales , Hailei Wang , Fernanda Perpétua Casciatori , João Claúdio Thoméo
{"title":"强化转鼓式生物反应器,利用农用工业废渣固态培养生产纤维素酶","authors":"Lina María Grajales ,&nbsp;Hailei Wang ,&nbsp;Fernanda Perpétua Casciatori ,&nbsp;João Claúdio Thoméo","doi":"10.1016/j.cep.2025.110223","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulolytic enzymes are vital for converting cellulosic residues into biofuels, yet large-scale production through solid-state cultivation (SSC) remains challenging due to the lack of suitable bioreactors. This study addresses this issue by developing a rotary drum bioreactor to produce cellulases from the thermophilic fungus <em>Myceliophthora thermophila</em> I-1D3b, using sugarcane bagasse and wheat bran as substrates. The bioreactor integrates upstream, fermentation, and downstream processes, streamlining production and enhancing efficiency. The study explored enzymatic activity (EA) at varying substrate loadings and drum rotation conditions. Although statistically similar, at 50 % loading, drum rotation slightly improved EA (49.12 U/mL ± 6.56 U/mL) compared to static conditions (47.78 U/mL ± 8.25 U/mL). Conversely, at 40 % loading, rotation reduced EA significantly (23.57 U/mL ± 3.17 U/mL) compared to static conditions (46.91 U/mL ± 8.17 U/mL). At 60 % loading, EA was similar under both static and rotated conditions. The design effectively supports fermentation, facilitates enzymatic extract recovery, and minimizes temperature and moisture gradients. These results demonstrate the rotary drum bioreactor's potential for scaling up cellulase production, offering a promising solution for industrial SSC processes.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"210 ","pages":"Article 110223"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intensified rotary drum bioreactor for cellulase production from agro-industrial residues by solid-state cultivation\",\"authors\":\"Lina María Grajales ,&nbsp;Hailei Wang ,&nbsp;Fernanda Perpétua Casciatori ,&nbsp;João Claúdio Thoméo\",\"doi\":\"10.1016/j.cep.2025.110223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cellulolytic enzymes are vital for converting cellulosic residues into biofuels, yet large-scale production through solid-state cultivation (SSC) remains challenging due to the lack of suitable bioreactors. This study addresses this issue by developing a rotary drum bioreactor to produce cellulases from the thermophilic fungus <em>Myceliophthora thermophila</em> I-1D3b, using sugarcane bagasse and wheat bran as substrates. The bioreactor integrates upstream, fermentation, and downstream processes, streamlining production and enhancing efficiency. The study explored enzymatic activity (EA) at varying substrate loadings and drum rotation conditions. Although statistically similar, at 50 % loading, drum rotation slightly improved EA (49.12 U/mL ± 6.56 U/mL) compared to static conditions (47.78 U/mL ± 8.25 U/mL). Conversely, at 40 % loading, rotation reduced EA significantly (23.57 U/mL ± 3.17 U/mL) compared to static conditions (46.91 U/mL ± 8.17 U/mL). At 60 % loading, EA was similar under both static and rotated conditions. The design effectively supports fermentation, facilitates enzymatic extract recovery, and minimizes temperature and moisture gradients. These results demonstrate the rotary drum bioreactor's potential for scaling up cellulase production, offering a promising solution for industrial SSC processes.</div></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":\"210 \",\"pages\":\"Article 110223\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0255270125000728\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125000728","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

纤维素水解酶对于将纤维素残渣转化为生物燃料至关重要,但由于缺乏合适的生物反应器,通过固态培养(SSC)进行大规模生产仍然具有挑战性。本研究以甘蔗甘蔗渣和麦麸为底物,开发了一种转鼓式生物反应器,从嗜热真菌菌丝霉I-1D3b生产纤维素酶,解决了这一问题。该生物反应器集成了上游、发酵和下游工艺,简化了生产流程,提高了效率。该研究探讨了不同底物负载和转鼓条件下的酶活性(EA)。与静态条件(47.78 U/mL±8.25 U/mL)相比,在50%负载下,转鼓略微提高EA (49.12 U/mL±6.56 U/mL)。相反,在40%负荷下,与静态条件(46.91 U/mL±8.17 U/mL)相比,旋转显著降低EA (23.57 U/mL±3.17 U/mL)。在60%的载荷下,静态和旋转条件下的EA相似。该设计有效地支持发酵,促进酶提取物回收,并最大限度地减少温度和湿度梯度。这些结果证明了转鼓生物反应器在扩大纤维素酶生产方面的潜力,为工业SSC工艺提供了一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intensified rotary drum bioreactor for cellulase production from agro-industrial residues by solid-state cultivation

Intensified rotary drum bioreactor for cellulase production from agro-industrial residues by solid-state cultivation
Cellulolytic enzymes are vital for converting cellulosic residues into biofuels, yet large-scale production through solid-state cultivation (SSC) remains challenging due to the lack of suitable bioreactors. This study addresses this issue by developing a rotary drum bioreactor to produce cellulases from the thermophilic fungus Myceliophthora thermophila I-1D3b, using sugarcane bagasse and wheat bran as substrates. The bioreactor integrates upstream, fermentation, and downstream processes, streamlining production and enhancing efficiency. The study explored enzymatic activity (EA) at varying substrate loadings and drum rotation conditions. Although statistically similar, at 50 % loading, drum rotation slightly improved EA (49.12 U/mL ± 6.56 U/mL) compared to static conditions (47.78 U/mL ± 8.25 U/mL). Conversely, at 40 % loading, rotation reduced EA significantly (23.57 U/mL ± 3.17 U/mL) compared to static conditions (46.91 U/mL ± 8.17 U/mL). At 60 % loading, EA was similar under both static and rotated conditions. The design effectively supports fermentation, facilitates enzymatic extract recovery, and minimizes temperature and moisture gradients. These results demonstrate the rotary drum bioreactor's potential for scaling up cellulase production, offering a promising solution for industrial SSC processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信