木霉对马铃薯和番茄致病性疫霉的作用方式及抑制活性研究进展

IF 5.7 2区 生物学 Q1 MYCOLOGY
Quentin Cournault , Stéphanie Gibot-Leclerc , Noadya Monnier , Christian Steinberg
{"title":"木霉对马铃薯和番茄致病性疫霉的作用方式及抑制活性研究进展","authors":"Quentin Cournault ,&nbsp;Stéphanie Gibot-Leclerc ,&nbsp;Noadya Monnier ,&nbsp;Christian Steinberg","doi":"10.1016/j.fbr.2025.100414","DOIUrl":null,"url":null,"abstract":"<div><div>Late blight, caused by the oomycete <em>Phytophthora infestans</em>, is one of the most devastating diseases of potatoes and tomatoes, resulting in low yields and economic losses for farmers. <em>Trichoderma</em> spp. are known for their antagonistic abilities against a wide range of pathogens, including <em>P. infestans</em>. This review provides an overview of the current knowledge on <em>Trichoderma</em> spp., by (1) classifying the diversity of modes of action of <em>Trichoderma</em> species and (2) assessing the antagonistic ability of several species and strains of <em>Trichoderma</em> spp. against <em>P. infestans</em> in dual culture, through a meta-analysis. We found that many species of <em>Trichoderma</em> spp. have a double action against <em>P. infestans</em>, both (1) direct on the plant pathogen by emitting enzymes and volatile organic compounds and (2) plant-mediated by enhancing the host plant's defence potential. The meta-analysis showed that direct <em>Trichoderma</em> antagonistic ability against <em>P. infestans</em> is species and strain dependant. Among the most effective species, <em>T. asperellum</em> stands out with a mycelial inhibition potential of up to 90% for some strains. These findings were used to build a decision-making system, that accounts for <em>Trichoderma</em>-plant-<em>Phytophthora</em> interactions, pedoclimate, and strategies of <em>Trichoderma</em> spp. application on crops. The paper provides new insights into the management of <em>P. infestans</em> on potato and tomato crops and highlights promising biocontrol or fungicide mixtures, including several <em>Trichoderma</em> spp. and little-known species with promising regulatory effects on <em>P. infestans</em>.</div></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"52 ","pages":"Article 100414"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modes of action and inhibitory activity of Trichoderma species on potato and tomato pathogenic Phytophthora infestans: A review\",\"authors\":\"Quentin Cournault ,&nbsp;Stéphanie Gibot-Leclerc ,&nbsp;Noadya Monnier ,&nbsp;Christian Steinberg\",\"doi\":\"10.1016/j.fbr.2025.100414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Late blight, caused by the oomycete <em>Phytophthora infestans</em>, is one of the most devastating diseases of potatoes and tomatoes, resulting in low yields and economic losses for farmers. <em>Trichoderma</em> spp. are known for their antagonistic abilities against a wide range of pathogens, including <em>P. infestans</em>. This review provides an overview of the current knowledge on <em>Trichoderma</em> spp., by (1) classifying the diversity of modes of action of <em>Trichoderma</em> species and (2) assessing the antagonistic ability of several species and strains of <em>Trichoderma</em> spp. against <em>P. infestans</em> in dual culture, through a meta-analysis. We found that many species of <em>Trichoderma</em> spp. have a double action against <em>P. infestans</em>, both (1) direct on the plant pathogen by emitting enzymes and volatile organic compounds and (2) plant-mediated by enhancing the host plant's defence potential. The meta-analysis showed that direct <em>Trichoderma</em> antagonistic ability against <em>P. infestans</em> is species and strain dependant. Among the most effective species, <em>T. asperellum</em> stands out with a mycelial inhibition potential of up to 90% for some strains. These findings were used to build a decision-making system, that accounts for <em>Trichoderma</em>-plant-<em>Phytophthora</em> interactions, pedoclimate, and strategies of <em>Trichoderma</em> spp. application on crops. The paper provides new insights into the management of <em>P. infestans</em> on potato and tomato crops and highlights promising biocontrol or fungicide mixtures, including several <em>Trichoderma</em> spp. and little-known species with promising regulatory effects on <em>P. infestans</em>.</div></div>\",\"PeriodicalId\":12563,\"journal\":{\"name\":\"Fungal Biology Reviews\",\"volume\":\"52 \",\"pages\":\"Article 100414\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749461325000041\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749461325000041","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由卵霉菌疫霉引起的晚疫病是马铃薯和番茄最具破坏性的病害之一,给农民造成低产和经济损失。木霉以其对多种病原体的拮抗能力而闻名,包括病原菌。本文通过(1)对木霉种类作用方式的多样性进行了分类;(2)通过荟萃分析,评估了几种木霉种类和菌株在双重培养中对病原菌的拮抗能力。我们发现许多种类的木霉对病原菌具有双重作用,(1)通过释放酶和挥发性有机化合物直接作用于植物病原体,(2)通过增强寄主植物的防御潜力来介导植物。meta分析显示木霉对病原菌的直接拮抗能力与菌种有关。在最有效的菌种中,曲霉(T. asperellum)对某些菌株的菌丝抑制潜力高达90%。这些发现被用来建立一个决策系统,该系统考虑了木霉-植物-疫霉的相互作用、土壤和木霉在作物上的应用策略。本文为马铃薯和番茄病原菌的管理提供了新的见解,并重点介绍了有前途的生物防治或杀菌剂混合物,包括几种对病原菌有良好调节作用的木霉和鲜为人知的物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modes of action and inhibitory activity of Trichoderma species on potato and tomato pathogenic Phytophthora infestans: A review
Late blight, caused by the oomycete Phytophthora infestans, is one of the most devastating diseases of potatoes and tomatoes, resulting in low yields and economic losses for farmers. Trichoderma spp. are known for their antagonistic abilities against a wide range of pathogens, including P. infestans. This review provides an overview of the current knowledge on Trichoderma spp., by (1) classifying the diversity of modes of action of Trichoderma species and (2) assessing the antagonistic ability of several species and strains of Trichoderma spp. against P. infestans in dual culture, through a meta-analysis. We found that many species of Trichoderma spp. have a double action against P. infestans, both (1) direct on the plant pathogen by emitting enzymes and volatile organic compounds and (2) plant-mediated by enhancing the host plant's defence potential. The meta-analysis showed that direct Trichoderma antagonistic ability against P. infestans is species and strain dependant. Among the most effective species, T. asperellum stands out with a mycelial inhibition potential of up to 90% for some strains. These findings were used to build a decision-making system, that accounts for Trichoderma-plant-Phytophthora interactions, pedoclimate, and strategies of Trichoderma spp. application on crops. The paper provides new insights into the management of P. infestans on potato and tomato crops and highlights promising biocontrol or fungicide mixtures, including several Trichoderma spp. and little-known species with promising regulatory effects on P. infestans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.60
自引率
0.00%
发文量
36
期刊介绍: Fungal Biology Reviews is an international reviews journal, owned by the British Mycological Society. Its objective is to provide a forum for high quality review articles within fungal biology. It covers all fields of fungal biology, whether fundamental or applied, including fungal diversity, ecology, evolution, physiology and ecophysiology, biochemistry, genetics and molecular biology, cell biology, interactions (symbiosis, pathogenesis etc), environmental aspects, biotechnology and taxonomy. It considers aspects of all organisms historically or recently recognized as fungi, including lichen-fungi, microsporidia, oomycetes, slime moulds, stramenopiles, and yeasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信