等离子体-液体相互作用制备CeO2纳米颗粒

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
R. Basumatary , P. Kalita , H. Bailung , R. Brahma
{"title":"等离子体-液体相互作用制备CeO2纳米颗粒","authors":"R. Basumatary ,&nbsp;P. Kalita ,&nbsp;H. Bailung ,&nbsp;R. Brahma","doi":"10.1016/j.mtla.2025.102367","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a facile and energy-efficient technique known as plasma-liquid interaction is employed for crystal growth, defect engineering, and band gap tuning. Using this novel procedure that minimizes the use of chemicals, cubic fluorite CeO<sub>2</sub> nanoparticles are produced. The cubic fluorite structure of the prepared nanoparticles is confirmed by the Rietveld refinement method of XRD patterns. The further crystallization of cubic CeO<sub>2</sub> nanoparticles (CeO<sub>2</sub>@300) is observed due to heat treatment following plasma interactions. However, prolonged plasma treatment led to the formation of crystallinity with the generation of oxygen-related vacancies in the host lattice. Post-heat treatment of the materials resulted in increased crystallinity and reduction in vacancies within the host matrix, as confirmed by the vacancy concentration calculations derived from XRD data and the variations of Raman absorption band intensity at 1047.24 cm<sup>−1</sup>. X-ray photoelectron spectroscopy analysis of the CeO<sub>2</sub>@RT sample reveals the presence of the Ce<sup>3+</sup> ions, indicating the existence of vacancies. TEM analysis showed a good agreement with XRD analysis, revealing a polycrystalline in nature with the particle size distribution ranging from 3 nm to 10 nm. The calculated vacancy concentration indicated a higher vacancy concentration in the CeO<sub>2</sub>@RT sample, which is further confirmed by Raman spectral analysis. The characteristic vibrations of the Ce-O functional groups are identified using FTIR at absorption bands ranging from 814 cm<sup>−1</sup> to 530 cm<sup>−1</sup>, supporting the cubic fluorite structure of the CeO<sub>2</sub> nanoparticles. The band gap energy and defect energy, calculated from the UV–vis spectrum, reveal a lower band gap energy with higher defect energy for CeO<sub>2</sub>@RT sample, and higher band gap energy with lower defect energy for CeO<sub>2</sub>@300, making these material suitable for optoelectronic devices.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"39 ","pages":"Article 102367"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of CeO2 nanoparticles through plasma-liquid interaction\",\"authors\":\"R. Basumatary ,&nbsp;P. Kalita ,&nbsp;H. Bailung ,&nbsp;R. Brahma\",\"doi\":\"10.1016/j.mtla.2025.102367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a facile and energy-efficient technique known as plasma-liquid interaction is employed for crystal growth, defect engineering, and band gap tuning. Using this novel procedure that minimizes the use of chemicals, cubic fluorite CeO<sub>2</sub> nanoparticles are produced. The cubic fluorite structure of the prepared nanoparticles is confirmed by the Rietveld refinement method of XRD patterns. The further crystallization of cubic CeO<sub>2</sub> nanoparticles (CeO<sub>2</sub>@300) is observed due to heat treatment following plasma interactions. However, prolonged plasma treatment led to the formation of crystallinity with the generation of oxygen-related vacancies in the host lattice. Post-heat treatment of the materials resulted in increased crystallinity and reduction in vacancies within the host matrix, as confirmed by the vacancy concentration calculations derived from XRD data and the variations of Raman absorption band intensity at 1047.24 cm<sup>−1</sup>. X-ray photoelectron spectroscopy analysis of the CeO<sub>2</sub>@RT sample reveals the presence of the Ce<sup>3+</sup> ions, indicating the existence of vacancies. TEM analysis showed a good agreement with XRD analysis, revealing a polycrystalline in nature with the particle size distribution ranging from 3 nm to 10 nm. The calculated vacancy concentration indicated a higher vacancy concentration in the CeO<sub>2</sub>@RT sample, which is further confirmed by Raman spectral analysis. The characteristic vibrations of the Ce-O functional groups are identified using FTIR at absorption bands ranging from 814 cm<sup>−1</sup> to 530 cm<sup>−1</sup>, supporting the cubic fluorite structure of the CeO<sub>2</sub> nanoparticles. The band gap energy and defect energy, calculated from the UV–vis spectrum, reveal a lower band gap energy with higher defect energy for CeO<sub>2</sub>@RT sample, and higher band gap energy with lower defect energy for CeO<sub>2</sub>@300, making these material suitable for optoelectronic devices.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"39 \",\"pages\":\"Article 102367\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152925000341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,一种简单而节能的技术被称为等离子体-液体相互作用,用于晶体生长,缺陷工程和带隙调谐。使用这种新方法,可以最大限度地减少化学品的使用,从而产生立方萤石CeO2纳米颗粒。通过XRD谱图的Rietveld细化方法证实了所制备纳米颗粒的立方萤石结构。由于等离子体相互作用后的热处理,观察到立方CeO2纳米颗粒(CeO2@300)的进一步结晶。然而,长时间的等离子体处理导致结晶度的形成,并在宿主晶格中产生与氧相关的空位。通过XRD数据计算的空位浓度和1047.24 cm−1处拉曼吸收带强度的变化可以证实,材料经过热处理后,结晶度增加,基体内部空位减少。CeO2@RT样品的x射线光电子能谱分析显示Ce3+离子的存在,表明存在空位。TEM分析与XRD分析结果吻合较好,表明该材料为多晶,粒径分布在3 ~ 10 nm之间。计算得到的空位浓度表明CeO2@RT样品中空位浓度较高,拉曼光谱分析进一步证实了这一点。Ce-O官能团的特征振动在814 cm - 1 ~ 530 cm - 1的吸收波段上被FTIR识别,支持CeO2纳米颗粒的立方萤石结构。通过紫外-可见光谱计算带隙能和缺陷能,发现CeO2@RT样品的带隙能较低,缺陷能较高;CeO2@300样品的带隙能较高,缺陷能较低,适合用于光电器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Facile synthesis of CeO2 nanoparticles through plasma-liquid interaction

Facile synthesis of CeO2 nanoparticles through plasma-liquid interaction
In this study, a facile and energy-efficient technique known as plasma-liquid interaction is employed for crystal growth, defect engineering, and band gap tuning. Using this novel procedure that minimizes the use of chemicals, cubic fluorite CeO2 nanoparticles are produced. The cubic fluorite structure of the prepared nanoparticles is confirmed by the Rietveld refinement method of XRD patterns. The further crystallization of cubic CeO2 nanoparticles (CeO2@300) is observed due to heat treatment following plasma interactions. However, prolonged plasma treatment led to the formation of crystallinity with the generation of oxygen-related vacancies in the host lattice. Post-heat treatment of the materials resulted in increased crystallinity and reduction in vacancies within the host matrix, as confirmed by the vacancy concentration calculations derived from XRD data and the variations of Raman absorption band intensity at 1047.24 cm−1. X-ray photoelectron spectroscopy analysis of the CeO2@RT sample reveals the presence of the Ce3+ ions, indicating the existence of vacancies. TEM analysis showed a good agreement with XRD analysis, revealing a polycrystalline in nature with the particle size distribution ranging from 3 nm to 10 nm. The calculated vacancy concentration indicated a higher vacancy concentration in the CeO2@RT sample, which is further confirmed by Raman spectral analysis. The characteristic vibrations of the Ce-O functional groups are identified using FTIR at absorption bands ranging from 814 cm−1 to 530 cm−1, supporting the cubic fluorite structure of the CeO2 nanoparticles. The band gap energy and defect energy, calculated from the UV–vis spectrum, reveal a lower band gap energy with higher defect energy for CeO2@RT sample, and higher band gap energy with lower defect energy for CeO2@300, making these material suitable for optoelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信