R2中曲率次仿射临界幂的古流分类

IF 1.7 2区 数学 Q1 MATHEMATICS
Kyeongsu Choi , Liming Sun
{"title":"R2中曲率次仿射临界幂的古流分类","authors":"Kyeongsu Choi ,&nbsp;Liming Sun","doi":"10.1016/j.jfa.2025.110865","DOIUrl":null,"url":null,"abstract":"<div><div>We classify closed convex ancient <em>α</em>-curve shortening flows for sub-affine-critical powers <span><math><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>. In addition, we show that closed convex smooth finite entropy ancient <em>α</em>-curve shortening flows with <span><math><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> are shrinking circles. After rescaling, the ancient flows satisfying the above conditions converge exponentially fast to smooth closed convex shrinkers as the time goes to negative infinity. In particular, when <span><math><mi>α</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac></math></span> with <span><math><mn>3</mn><mo>≤</mo><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>, the round circle shrinker has non-trivial Jacobi fields, but the ancient flows asymptotic to shrinking circles do not evolve along the Jacobi fields.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 9","pages":"Article 110865"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of ancient flows by sub-affine-critical powers of curvature in R2\",\"authors\":\"Kyeongsu Choi ,&nbsp;Liming Sun\",\"doi\":\"10.1016/j.jfa.2025.110865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We classify closed convex ancient <em>α</em>-curve shortening flows for sub-affine-critical powers <span><math><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>. In addition, we show that closed convex smooth finite entropy ancient <em>α</em>-curve shortening flows with <span><math><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> are shrinking circles. After rescaling, the ancient flows satisfying the above conditions converge exponentially fast to smooth closed convex shrinkers as the time goes to negative infinity. In particular, when <span><math><mi>α</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac></math></span> with <span><math><mn>3</mn><mo>≤</mo><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>, the round circle shrinker has non-trivial Jacobi fields, but the ancient flows asymptotic to shrinking circles do not evolve along the Jacobi fields.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 9\",\"pages\":\"Article 110865\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625000473\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000473","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对次仿射临界幂α≤13的闭凸古α-曲线缩短流进行了分类。此外,我们还证明了α>;13的闭凸光滑有限熵古α-曲线缩短流是收缩圆。重新缩放后,满足上述条件的古流随着时间趋近于负无穷,以指数速度收敛到光滑闭合凸收缩点。特别地,当α=1k2−1且3≤k∈N时,圆缩圆具有非平凡的Jacobi场,但渐近于缩圆的古流不沿Jacobi场演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of ancient flows by sub-affine-critical powers of curvature in R2
We classify closed convex ancient α-curve shortening flows for sub-affine-critical powers α13. In addition, we show that closed convex smooth finite entropy ancient α-curve shortening flows with α>13 are shrinking circles. After rescaling, the ancient flows satisfying the above conditions converge exponentially fast to smooth closed convex shrinkers as the time goes to negative infinity. In particular, when α=1k21 with 3kN, the round circle shrinker has non-trivial Jacobi fields, but the ancient flows asymptotic to shrinking circles do not evolve along the Jacobi fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信