心血管感染的早期纤维蛋白生物膜发育

IF 4.9 Q1 MICROBIOLOGY
Safae Oukrich , Jane Hong , Mariël Leon-Grooters , Wiggert A. van Cappellen , Johan A. Slotman , Gijsje H. Koenderink , Willem J.B. van Wamel , Moniek P.M. de Maat , Klazina Kooiman , Kirby R. Lattwein
{"title":"心血管感染的早期纤维蛋白生物膜发育","authors":"Safae Oukrich ,&nbsp;Jane Hong ,&nbsp;Mariël Leon-Grooters ,&nbsp;Wiggert A. van Cappellen ,&nbsp;Johan A. Slotman ,&nbsp;Gijsje H. Koenderink ,&nbsp;Willem J.B. van Wamel ,&nbsp;Moniek P.M. de Maat ,&nbsp;Klazina Kooiman ,&nbsp;Kirby R. Lattwein","doi":"10.1016/j.bioflm.2025.100261","DOIUrl":null,"url":null,"abstract":"<div><div>The single most common microbe causing cardiovascular infections is <em>Staphylococcus aureus</em> (<em>S. aureus</em>). <em>S. aureus</em> produces coagulase that converts fibrinogen to fibrin, which is incorporated into biofilms. This process aids in adherence to intravascular structures, defense against the host immune system, and resistance to antimicrobial treatment. Despite its significance, fibrin formation in <em>S. aureus</em> biofilms remains poorly understood. Therefore, this study aimed to elucidate the early development of cardiovascular biofilms. Clinically isolated coagulase-positive <em>S. aureus</em> and coagulase-negative <em>Staphylococcus lugdunensis</em> (<em>S. lugdunensis</em>) from patients with cardiovascular infections, and a coagulase mutant <em>S. aureus</em> Δcoa, were grown in tryptic soy broth (TSB), Iscove's Modified Dulbecco's Medium (IMDM), and pooled human plasma, with or without porcine heart valves. Bacterial growth, metabolic activity, and bacterial fibrinogen utilization were measured over 24 h at 37 °C. Time-lapse confocal microscopy was used to visualize and track biofilm development. <em>S. aureus</em> exhibited more growth in TSB and human plasma than <em>S. lugdunensis</em> and <em>S. aureus</em> Δcoa, but showed similar growth in IMDM after 24 h. Peak metabolic activity for all isolates was highest in TSB and lowest in human plasma. The presence of porcine valves caused strain-dependent alterations in time to peak metabolic activity. Confocal imaging revealed fibrin-based biofilm development exclusively in the coagulase-producing <em>S. aureus</em> strains. Between 2 and 6 h of biofilm development, 74.9 % (p = 0.034) of the fibrinogen from the medium was converted to fibrin. Variations in fibrin network porosity and density were observed among different coagulase-producing <em>S. aureus</em> strains. Fibrin formation is mediated by <em>S. aureus</em> coagulase and first strands occurred within 3 h for clinical strains after exposure to human plasma. This study stresses the importance of experimental design given the bacterial changes due to different media and substrates and provides insights into the early pathogenesis of <em>S. aureus</em> cardiovascular biofilms.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100261"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early fibrin biofilm development in cardiovascular infections\",\"authors\":\"Safae Oukrich ,&nbsp;Jane Hong ,&nbsp;Mariël Leon-Grooters ,&nbsp;Wiggert A. van Cappellen ,&nbsp;Johan A. Slotman ,&nbsp;Gijsje H. Koenderink ,&nbsp;Willem J.B. van Wamel ,&nbsp;Moniek P.M. de Maat ,&nbsp;Klazina Kooiman ,&nbsp;Kirby R. Lattwein\",\"doi\":\"10.1016/j.bioflm.2025.100261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The single most common microbe causing cardiovascular infections is <em>Staphylococcus aureus</em> (<em>S. aureus</em>). <em>S. aureus</em> produces coagulase that converts fibrinogen to fibrin, which is incorporated into biofilms. This process aids in adherence to intravascular structures, defense against the host immune system, and resistance to antimicrobial treatment. Despite its significance, fibrin formation in <em>S. aureus</em> biofilms remains poorly understood. Therefore, this study aimed to elucidate the early development of cardiovascular biofilms. Clinically isolated coagulase-positive <em>S. aureus</em> and coagulase-negative <em>Staphylococcus lugdunensis</em> (<em>S. lugdunensis</em>) from patients with cardiovascular infections, and a coagulase mutant <em>S. aureus</em> Δcoa, were grown in tryptic soy broth (TSB), Iscove's Modified Dulbecco's Medium (IMDM), and pooled human plasma, with or without porcine heart valves. Bacterial growth, metabolic activity, and bacterial fibrinogen utilization were measured over 24 h at 37 °C. Time-lapse confocal microscopy was used to visualize and track biofilm development. <em>S. aureus</em> exhibited more growth in TSB and human plasma than <em>S. lugdunensis</em> and <em>S. aureus</em> Δcoa, but showed similar growth in IMDM after 24 h. Peak metabolic activity for all isolates was highest in TSB and lowest in human plasma. The presence of porcine valves caused strain-dependent alterations in time to peak metabolic activity. Confocal imaging revealed fibrin-based biofilm development exclusively in the coagulase-producing <em>S. aureus</em> strains. Between 2 and 6 h of biofilm development, 74.9 % (p = 0.034) of the fibrinogen from the medium was converted to fibrin. Variations in fibrin network porosity and density were observed among different coagulase-producing <em>S. aureus</em> strains. Fibrin formation is mediated by <em>S. aureus</em> coagulase and first strands occurred within 3 h for clinical strains after exposure to human plasma. This study stresses the importance of experimental design given the bacterial changes due to different media and substrates and provides insights into the early pathogenesis of <em>S. aureus</em> cardiovascular biofilms.</div></div>\",\"PeriodicalId\":55844,\"journal\":{\"name\":\"Biofilm\",\"volume\":\"9 \",\"pages\":\"Article 100261\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofilm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590207525000097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590207525000097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

引起心血管感染的单一最常见微生物是金黄色葡萄球菌(金黄色葡萄球菌)。金黄色葡萄球菌产生凝固酶,将纤维蛋白原转化为纤维蛋白,并将其纳入生物膜。这一过程有助于粘附血管内结构,防御宿主免疫系统,并抵抗抗微生物治疗。尽管具有重要意义,但对金黄色葡萄球菌生物膜中的纤维蛋白形成仍知之甚少。因此,本研究旨在阐明心血管生物膜的早期发育。从心血管感染患者中分离出凝固酶阳性的金黄色葡萄球菌和凝固酶阴性的卢顿葡萄球菌(S. lugdunensis),以及一种凝固酶突变的金黄色葡萄球菌Δcoa,在胰蛋白酶豆浆(TSB)、Iscove改良的Dulbecco培养基(IMDM)中生长,并混合人血浆,有或没有猪心脏瓣膜。在37°C条件下,在24 h内测量细菌生长、代谢活性和细菌纤维蛋白原利用率。延时共聚焦显微镜用于观察和跟踪生物膜的发育。金黄色葡萄球菌在TSB和人血浆中的生长速度高于S. lugdunensis和S. aureus Δcoa,但在24 h后IMDM的生长速度相似。所有分离株的代谢活性峰值在TSB中最高,在人血浆中最低。猪瓣膜的存在导致菌株依赖性的变化,及时达到代谢活动的峰值。共聚焦成像显示纤维蛋白为基础的生物膜的发展仅限于凝固酶产生金黄色葡萄球菌菌株。在生物膜发育的2 - 6小时,培养基中74.9% (p = 0.034)的纤维蛋白原转化为纤维蛋白。不同产凝固酶金黄色葡萄球菌菌株间纤维蛋白网络孔隙度和密度存在差异。纤维蛋白的形成是由金黄色葡萄球菌凝固酶介导的,临床菌株暴露于人血浆后3小时内就会出现第一条纤维蛋白链。本研究强调了实验设计的重要性,考虑到不同培养基和底物引起的细菌变化,并为金黄色葡萄球菌心血管生物膜的早期发病机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early fibrin biofilm development in cardiovascular infections
The single most common microbe causing cardiovascular infections is Staphylococcus aureus (S. aureus). S. aureus produces coagulase that converts fibrinogen to fibrin, which is incorporated into biofilms. This process aids in adherence to intravascular structures, defense against the host immune system, and resistance to antimicrobial treatment. Despite its significance, fibrin formation in S. aureus biofilms remains poorly understood. Therefore, this study aimed to elucidate the early development of cardiovascular biofilms. Clinically isolated coagulase-positive S. aureus and coagulase-negative Staphylococcus lugdunensis (S. lugdunensis) from patients with cardiovascular infections, and a coagulase mutant S. aureus Δcoa, were grown in tryptic soy broth (TSB), Iscove's Modified Dulbecco's Medium (IMDM), and pooled human plasma, with or without porcine heart valves. Bacterial growth, metabolic activity, and bacterial fibrinogen utilization were measured over 24 h at 37 °C. Time-lapse confocal microscopy was used to visualize and track biofilm development. S. aureus exhibited more growth in TSB and human plasma than S. lugdunensis and S. aureus Δcoa, but showed similar growth in IMDM after 24 h. Peak metabolic activity for all isolates was highest in TSB and lowest in human plasma. The presence of porcine valves caused strain-dependent alterations in time to peak metabolic activity. Confocal imaging revealed fibrin-based biofilm development exclusively in the coagulase-producing S. aureus strains. Between 2 and 6 h of biofilm development, 74.9 % (p = 0.034) of the fibrinogen from the medium was converted to fibrin. Variations in fibrin network porosity and density were observed among different coagulase-producing S. aureus strains. Fibrin formation is mediated by S. aureus coagulase and first strands occurred within 3 h for clinical strains after exposure to human plasma. This study stresses the importance of experimental design given the bacterial changes due to different media and substrates and provides insights into the early pathogenesis of S. aureus cardiovascular biofilms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofilm
Biofilm MICROBIOLOGY-
CiteScore
7.50
自引率
1.50%
发文量
30
审稿时长
57 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信