不同相组成的钨纳米层薄膜结构的电导率和磁光响应

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
A.V. Prokaznikov , R.V. Selyukov , V.A. Paporkov
{"title":"不同相组成的钨纳米层薄膜结构的电导率和磁光响应","authors":"A.V. Prokaznikov ,&nbsp;R.V. Selyukov ,&nbsp;V.A. Paporkov","doi":"10.1016/j.cap.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Electrical properties of thin W films containing α-W and β-W are studied depending on their thickness, substrate material, phase composition and microstructure. The thickness dependence of phase composition is presented. The theoretical estimations according to quantum mechanical approaches result in good agreement with experimental results for α-W films. The major mechanism of charge carriers scattering in tungsten crystal is the scattering on deformation potential. The thickness dependence of resistivity is investigated experimentally and theoretically, which indicates the dominant contribution of grain-boundary scattering as well as the influence of the interfaces in multilayer structures. The tunneling mechanism is proposed to explain the grain boundary scattering. Transverse magneto-optical Kerr effect indicates the absence of uniaxial symmetry in Co/W system that testifies about the features of tungsten films.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 78-86"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductivity and magneto-optical response of film structures based on tungsten nanolayers with different phase composition\",\"authors\":\"A.V. Prokaznikov ,&nbsp;R.V. Selyukov ,&nbsp;V.A. Paporkov\",\"doi\":\"10.1016/j.cap.2025.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrical properties of thin W films containing α-W and β-W are studied depending on their thickness, substrate material, phase composition and microstructure. The thickness dependence of phase composition is presented. The theoretical estimations according to quantum mechanical approaches result in good agreement with experimental results for α-W films. The major mechanism of charge carriers scattering in tungsten crystal is the scattering on deformation potential. The thickness dependence of resistivity is investigated experimentally and theoretically, which indicates the dominant contribution of grain-boundary scattering as well as the influence of the interfaces in multilayer structures. The tunneling mechanism is proposed to explain the grain boundary scattering. Transverse magneto-optical Kerr effect indicates the absence of uniaxial symmetry in Co/W system that testifies about the features of tungsten films.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"72 \",\"pages\":\"Pages 78-86\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173925000288\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000288","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了含有α-W和β-W的W薄膜的电学性能,这取决于薄膜的厚度、衬底材料、相组成和微观结构。提出了相组成对厚度的依赖关系。基于量子力学方法的理论估计与α-W薄膜的实验结果吻合较好。钨晶体中载流子散射的主要机制是变形势散射。实验和理论研究了电阻率对厚度的依赖关系,表明晶界散射是多层结构中电阻率的主要贡献,界面的影响也是晶界散射的主要贡献。提出了隧道机制来解释晶界散射。横向磁光克尔效应表明Co/W体系中不存在单轴对称性,证明了钨薄膜的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conductivity and magneto-optical response of film structures based on tungsten nanolayers with different phase composition

Conductivity and magneto-optical response of film structures based on tungsten nanolayers with different phase composition
Electrical properties of thin W films containing α-W and β-W are studied depending on their thickness, substrate material, phase composition and microstructure. The thickness dependence of phase composition is presented. The theoretical estimations according to quantum mechanical approaches result in good agreement with experimental results for α-W films. The major mechanism of charge carriers scattering in tungsten crystal is the scattering on deformation potential. The thickness dependence of resistivity is investigated experimentally and theoretically, which indicates the dominant contribution of grain-boundary scattering as well as the influence of the interfaces in multilayer structures. The tunneling mechanism is proposed to explain the grain boundary scattering. Transverse magneto-optical Kerr effect indicates the absence of uniaxial symmetry in Co/W system that testifies about the features of tungsten films.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信