拉伸表面上带有卡塔尼奥-克里斯托夫热通量的非稳态 MHD 生物对流的数值模拟

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Chinnam A.A.E. Shalini , Charankumar Ganteda , G.V. Ramana Reddy , B Uma Maheswari , G. Kokila , Vediyappan Govindan , Haewon Byeon , Seepana Praveenkumar , Busayamas Pimpunchat
{"title":"拉伸表面上带有卡塔尼奥-克里斯托夫热通量的非稳态 MHD 生物对流的数值模拟","authors":"Chinnam A.A.E. Shalini ,&nbsp;Charankumar Ganteda ,&nbsp;G.V. Ramana Reddy ,&nbsp;B Uma Maheswari ,&nbsp;G. Kokila ,&nbsp;Vediyappan Govindan ,&nbsp;Haewon Byeon ,&nbsp;Seepana Praveenkumar ,&nbsp;Busayamas Pimpunchat","doi":"10.1016/j.csite.2025.105862","DOIUrl":null,"url":null,"abstract":"<div><div>The study explores the properties of mass and heat transfer in a time-dependent, unsteady magnetohydrodynamic (MHD) flow over a permeable, radiative, and expanded surface, incorporating bio-convection, nanoparticle suspension, and gyrotactic bacteria dynamics. The model considers the effects of emission, speed slip, and bio-thermal convection in the fluid system. The Cattaneo-Christov heat flux model is employed to account for the finite speed of thermal diffusion, and the fourth-order Runge-Kutta method with the shooting technique is utilized for numerical solutions. Additionally, the study investigates the influence of mass suction, heat source, and aligned magnetic field on the boundary layer. The local concentration of mobile microorganisms decreases as the stretching parameter and bio-convection Schmidt both improve. The concentration φ(η) gets stronger, and when Sc values increase, it decreases. The concentration of microorganism <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span> is strengthened by increasing angle β, but it is diminished by increasing <span><math><mrow><mi>P</mi><mi>e</mi><mo>,</mo><mi>S</mi><mi>b</mi></mrow></math></span> and Sc, respectively.Even if the rate of temperature transmission (<span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span>) is maximal for positive values of A relative to negative values, the friction drags (<span><math><mrow><msub><mi>C</mi><mi>f</mi></msub></mrow></math></span>) are more powerful for negative values of A than for positive values of <span><math><mrow><mi>A</mi></mrow></math></span>.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"68 ","pages":"Article 105862"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of unsteady MHD bio-convective flow with Cattaneo-Christov heat flux over a stretching surface\",\"authors\":\"Chinnam A.A.E. Shalini ,&nbsp;Charankumar Ganteda ,&nbsp;G.V. Ramana Reddy ,&nbsp;B Uma Maheswari ,&nbsp;G. Kokila ,&nbsp;Vediyappan Govindan ,&nbsp;Haewon Byeon ,&nbsp;Seepana Praveenkumar ,&nbsp;Busayamas Pimpunchat\",\"doi\":\"10.1016/j.csite.2025.105862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study explores the properties of mass and heat transfer in a time-dependent, unsteady magnetohydrodynamic (MHD) flow over a permeable, radiative, and expanded surface, incorporating bio-convection, nanoparticle suspension, and gyrotactic bacteria dynamics. The model considers the effects of emission, speed slip, and bio-thermal convection in the fluid system. The Cattaneo-Christov heat flux model is employed to account for the finite speed of thermal diffusion, and the fourth-order Runge-Kutta method with the shooting technique is utilized for numerical solutions. Additionally, the study investigates the influence of mass suction, heat source, and aligned magnetic field on the boundary layer. The local concentration of mobile microorganisms decreases as the stretching parameter and bio-convection Schmidt both improve. The concentration φ(η) gets stronger, and when Sc values increase, it decreases. The concentration of microorganism <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span> is strengthened by increasing angle β, but it is diminished by increasing <span><math><mrow><mi>P</mi><mi>e</mi><mo>,</mo><mi>S</mi><mi>b</mi></mrow></math></span> and Sc, respectively.Even if the rate of temperature transmission (<span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span>) is maximal for positive values of A relative to negative values, the friction drags (<span><math><mrow><msub><mi>C</mi><mi>f</mi></msub></mrow></math></span>) are more powerful for negative values of A than for positive values of <span><math><mrow><mi>A</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"68 \",\"pages\":\"Article 105862\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25001224\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25001224","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of unsteady MHD bio-convective flow with Cattaneo-Christov heat flux over a stretching surface
The study explores the properties of mass and heat transfer in a time-dependent, unsteady magnetohydrodynamic (MHD) flow over a permeable, radiative, and expanded surface, incorporating bio-convection, nanoparticle suspension, and gyrotactic bacteria dynamics. The model considers the effects of emission, speed slip, and bio-thermal convection in the fluid system. The Cattaneo-Christov heat flux model is employed to account for the finite speed of thermal diffusion, and the fourth-order Runge-Kutta method with the shooting technique is utilized for numerical solutions. Additionally, the study investigates the influence of mass suction, heat source, and aligned magnetic field on the boundary layer. The local concentration of mobile microorganisms decreases as the stretching parameter and bio-convection Schmidt both improve. The concentration φ(η) gets stronger, and when Sc values increase, it decreases. The concentration of microorganism h(η) is strengthened by increasing angle β, but it is diminished by increasing Pe,Sb and Sc, respectively.Even if the rate of temperature transmission (Nu) is maximal for positive values of A relative to negative values, the friction drags (Cf) are more powerful for negative values of A than for positive values of A.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信