Qiao Yu, Jie Zhou, Qianqian Tao, Yong Liu, Hong Zhou*, Bin Kang* and Jing-Juan Xu*,
{"title":"超声活化铜基纳米声敏剂用于铜中毒协同治疗","authors":"Qiao Yu, Jie Zhou, Qianqian Tao, Yong Liu, Hong Zhou*, Bin Kang* and Jing-Juan Xu*, ","doi":"10.1021/acsabm.4c0171010.1021/acsabm.4c01710","DOIUrl":null,"url":null,"abstract":"<p >Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO<sub>2</sub>–Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response. When the nanomedicine was internalized into the tumor cells, ultrasound (US) induced the nanosonosensitizer to produce reactive oxygen species (ROS) to achieve sonodynamic therapy (SDT). GSH, acting as a hole trapping agent, improved the efficiency of SDT. Meanwhile, the downgrade of GSH was beneficial to cuproptosis and oxidative damage-based SDT in return. What is more, the US could regulate the release behavior of Cu(I). Cu(I) bonded to mitochondrial proteins and then aggregated the lipoylated protein, bringing about the turbulence of the tricarboxylic acid cycle. The combination of SDT and cuproptosis showed high matching to induce efficient cuproptosis and may inspire other cuproptosis-based nanosonosensitizer designs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 2","pages":"1503–1510 1503–1510"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy\",\"authors\":\"Qiao Yu, Jie Zhou, Qianqian Tao, Yong Liu, Hong Zhou*, Bin Kang* and Jing-Juan Xu*, \",\"doi\":\"10.1021/acsabm.4c0171010.1021/acsabm.4c01710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO<sub>2</sub>–Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response. When the nanomedicine was internalized into the tumor cells, ultrasound (US) induced the nanosonosensitizer to produce reactive oxygen species (ROS) to achieve sonodynamic therapy (SDT). GSH, acting as a hole trapping agent, improved the efficiency of SDT. Meanwhile, the downgrade of GSH was beneficial to cuproptosis and oxidative damage-based SDT in return. What is more, the US could regulate the release behavior of Cu(I). Cu(I) bonded to mitochondrial proteins and then aggregated the lipoylated protein, bringing about the turbulence of the tricarboxylic acid cycle. The combination of SDT and cuproptosis showed high matching to induce efficient cuproptosis and may inspire other cuproptosis-based nanosonosensitizer designs.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"8 2\",\"pages\":\"1503–1510 1503–1510\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsabm.4c01710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsabm.4c01710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy
Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO2–Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response. When the nanomedicine was internalized into the tumor cells, ultrasound (US) induced the nanosonosensitizer to produce reactive oxygen species (ROS) to achieve sonodynamic therapy (SDT). GSH, acting as a hole trapping agent, improved the efficiency of SDT. Meanwhile, the downgrade of GSH was beneficial to cuproptosis and oxidative damage-based SDT in return. What is more, the US could regulate the release behavior of Cu(I). Cu(I) bonded to mitochondrial proteins and then aggregated the lipoylated protein, bringing about the turbulence of the tricarboxylic acid cycle. The combination of SDT and cuproptosis showed high matching to induce efficient cuproptosis and may inspire other cuproptosis-based nanosonosensitizer designs.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.