{"title":"一类具有非线性记忆和阻尼项的波动方程整体弱解的不存在性","authors":"Quanguo Zhang","doi":"10.1016/j.aml.2025.109498","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the nonexistence of global weak solutions for a wave equation with nonlinear memory and damping terms. We give an answer to an open problem posed in D’Abbicco (2014). Moreover, comparing with the existing results, our results do not require any positivity condition of the initial values. The proof of our results is based on the asymptotic properties of solutions for an integral inequality.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"164 ","pages":"Article 109498"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonexistence of global weak solutions for a wave equation with nonlinear memory and damping terms\",\"authors\":\"Quanguo Zhang\",\"doi\":\"10.1016/j.aml.2025.109498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the nonexistence of global weak solutions for a wave equation with nonlinear memory and damping terms. We give an answer to an open problem posed in D’Abbicco (2014). Moreover, comparing with the existing results, our results do not require any positivity condition of the initial values. The proof of our results is based on the asymptotic properties of solutions for an integral inequality.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"164 \",\"pages\":\"Article 109498\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925000485\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000485","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Nonexistence of global weak solutions for a wave equation with nonlinear memory and damping terms
In this paper, we study the nonexistence of global weak solutions for a wave equation with nonlinear memory and damping terms. We give an answer to an open problem posed in D’Abbicco (2014). Moreover, comparing with the existing results, our results do not require any positivity condition of the initial values. The proof of our results is based on the asymptotic properties of solutions for an integral inequality.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.