一类具有非线性记忆和阻尼项的波动方程整体弱解的不存在性

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Quanguo Zhang
{"title":"一类具有非线性记忆和阻尼项的波动方程整体弱解的不存在性","authors":"Quanguo Zhang","doi":"10.1016/j.aml.2025.109498","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the nonexistence of global weak solutions for a wave equation with nonlinear memory and damping terms. We give an answer to an open problem posed in D’Abbicco (2014). Moreover, comparing with the existing results, our results do not require any positivity condition of the initial values. The proof of our results is based on the asymptotic properties of solutions for an integral inequality.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"164 ","pages":"Article 109498"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonexistence of global weak solutions for a wave equation with nonlinear memory and damping terms\",\"authors\":\"Quanguo Zhang\",\"doi\":\"10.1016/j.aml.2025.109498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the nonexistence of global weak solutions for a wave equation with nonlinear memory and damping terms. We give an answer to an open problem posed in D’Abbicco (2014). Moreover, comparing with the existing results, our results do not require any positivity condition of the initial values. The proof of our results is based on the asymptotic properties of solutions for an integral inequality.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"164 \",\"pages\":\"Article 109498\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925000485\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000485","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有非线性记忆项和阻尼项的波动方程整体弱解的不存在性。我们给出了D 'Abbicco(2014)提出的一个开放问题的答案。而且,与已有的结果相比,我们的结果不需要初值的任何正条件。我们的结果的证明是基于一个积分不等式解的渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonexistence of global weak solutions for a wave equation with nonlinear memory and damping terms
In this paper, we study the nonexistence of global weak solutions for a wave equation with nonlinear memory and damping terms. We give an answer to an open problem posed in D’Abbicco (2014). Moreover, comparing with the existing results, our results do not require any positivity condition of the initial values. The proof of our results is based on the asymptotic properties of solutions for an integral inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信