扭曲石墨烯中局域量子振荡成像的库仑相互作用和迁移狄拉克锥

IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Matan Bocarsly, Indranil Roy, Vishal Bhardwaj, Matan Uzan, Patrick Ledwith, Gal Shavit, Nasrin Banu, Yaozhang Zhou, Yuri Myasoedov, Kenji Watanabe, Takashi Taniguchi, Yuval Oreg, Daniel E. Parker, Yuval Ronen, Eli Zeldov
{"title":"扭曲石墨烯中局域量子振荡成像的库仑相互作用和迁移狄拉克锥","authors":"Matan Bocarsly, Indranil Roy, Vishal Bhardwaj, Matan Uzan, Patrick Ledwith, Gal Shavit, Nasrin Banu, Yaozhang Zhou, Yuri Myasoedov, Kenji Watanabe, Takashi Taniguchi, Yuval Oreg, Daniel E. Parker, Yuval Ronen, Eli Zeldov","doi":"10.1038/s41567-025-02786-z","DOIUrl":null,"url":null,"abstract":"Flat-band moiré graphene systems are a quintessential platform for investigating correlated phases of matter. Various interaction-driven ground states have been proposed, but despite extensive experimental effort, there has been little direct evidence that distinguishes between various phases, in particular near the charge neutrality point. Here we probe the fine details of the density of states and the effects of Coulomb interactions in alternating-twist trilayer graphene by imaging the local thermodynamic quantum oscillations with a nanoscale scanning superconducting quantum interference device. We find that the charging self-energy due to occupied electronic states is most important in explaining the high-carrier-density physics. At half-filling of the conduction flat band, we observe ferromagnetic-driven symmetry breaking, suggesting that it is the most robust mechanism in the hierarchy of phase transitions. Near charge neutrality, where exchange energy dominates over charging self-energy, we find a nematic semimetal ground state, which is theoretically favoured over gapped states in the presence of heterostrain. In this semimetallic phase, the flat-band Dirac cones migrate towards the mini-Brillouin zone centre, spontaneously breaking the threefold rotational symmetry. Our low-field local quantum oscillation technique can be used to explore the ground states of many strongly interacting van der Waals systems. Our understanding of the phase diagram of twisted graphene structures is incomplete. Now, twisted trilayer graphene is examined using a technique that locally images quantum oscillations and shows that a nematic semimetal is favoured at low density.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 3","pages":"421-429"},"PeriodicalIF":18.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-025-02786-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Coulomb interactions and migrating Dirac cones imaged by local quantum oscillations in twisted graphene\",\"authors\":\"Matan Bocarsly, Indranil Roy, Vishal Bhardwaj, Matan Uzan, Patrick Ledwith, Gal Shavit, Nasrin Banu, Yaozhang Zhou, Yuri Myasoedov, Kenji Watanabe, Takashi Taniguchi, Yuval Oreg, Daniel E. Parker, Yuval Ronen, Eli Zeldov\",\"doi\":\"10.1038/s41567-025-02786-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flat-band moiré graphene systems are a quintessential platform for investigating correlated phases of matter. Various interaction-driven ground states have been proposed, but despite extensive experimental effort, there has been little direct evidence that distinguishes between various phases, in particular near the charge neutrality point. Here we probe the fine details of the density of states and the effects of Coulomb interactions in alternating-twist trilayer graphene by imaging the local thermodynamic quantum oscillations with a nanoscale scanning superconducting quantum interference device. We find that the charging self-energy due to occupied electronic states is most important in explaining the high-carrier-density physics. At half-filling of the conduction flat band, we observe ferromagnetic-driven symmetry breaking, suggesting that it is the most robust mechanism in the hierarchy of phase transitions. Near charge neutrality, where exchange energy dominates over charging self-energy, we find a nematic semimetal ground state, which is theoretically favoured over gapped states in the presence of heterostrain. In this semimetallic phase, the flat-band Dirac cones migrate towards the mini-Brillouin zone centre, spontaneously breaking the threefold rotational symmetry. Our low-field local quantum oscillation technique can be used to explore the ground states of many strongly interacting van der Waals systems. Our understanding of the phase diagram of twisted graphene structures is incomplete. Now, twisted trilayer graphene is examined using a technique that locally images quantum oscillations and shows that a nematic semimetal is favoured at low density.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"21 3\",\"pages\":\"421-429\"},\"PeriodicalIF\":18.4000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41567-025-02786-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-025-02786-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-025-02786-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

平带莫尔条纹石墨烯系统是研究物质相关相的典型平台。已经提出了各种相互作用驱动的基态,但是尽管进行了大量的实验工作,很少有直接证据可以区分不同的相,特别是在电荷中性点附近。在这里,我们利用纳米级扫描超导量子干涉装置对交替扭曲三层石墨烯的局部热力学量子振荡进行成像,探讨了态密度和库仑相互作用的精细细节。我们发现由于占据电子态引起的充电自能在解释高载流子密度物理中是最重要的。在导平带的半填充处,我们观察到铁磁驱动的对称破缺,这表明它是相变层次中最强大的机制。在电荷中立性附近,在交换能占主导地位的地方,我们发现了一个向列半金属基态,在异应变存在下,它在理论上比间隙态更有利。在这个半金属相中,平带狄拉克锥向迷你布里渊区中心迁移,自发地破坏了三重旋转对称。我们的低场局域量子振荡技术可用于探索许多强相互作用的范德华体系的基态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coulomb interactions and migrating Dirac cones imaged by local quantum oscillations in twisted graphene

Coulomb interactions and migrating Dirac cones imaged by local quantum oscillations in twisted graphene

Coulomb interactions and migrating Dirac cones imaged by local quantum oscillations in twisted graphene
Flat-band moiré graphene systems are a quintessential platform for investigating correlated phases of matter. Various interaction-driven ground states have been proposed, but despite extensive experimental effort, there has been little direct evidence that distinguishes between various phases, in particular near the charge neutrality point. Here we probe the fine details of the density of states and the effects of Coulomb interactions in alternating-twist trilayer graphene by imaging the local thermodynamic quantum oscillations with a nanoscale scanning superconducting quantum interference device. We find that the charging self-energy due to occupied electronic states is most important in explaining the high-carrier-density physics. At half-filling of the conduction flat band, we observe ferromagnetic-driven symmetry breaking, suggesting that it is the most robust mechanism in the hierarchy of phase transitions. Near charge neutrality, where exchange energy dominates over charging self-energy, we find a nematic semimetal ground state, which is theoretically favoured over gapped states in the presence of heterostrain. In this semimetallic phase, the flat-band Dirac cones migrate towards the mini-Brillouin zone centre, spontaneously breaking the threefold rotational symmetry. Our low-field local quantum oscillation technique can be used to explore the ground states of many strongly interacting van der Waals systems. Our understanding of the phase diagram of twisted graphene structures is incomplete. Now, twisted trilayer graphene is examined using a technique that locally images quantum oscillations and shows that a nematic semimetal is favoured at low density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信