{"title":"用量子电路制冷机稳定Kerr-cat量子比特","authors":"Shumpei Masuda, Shunsuke Kamimura, Tsuyoshi Yamamoto, Takaaki Aoki, Akiyoshi Tomonaga","doi":"10.1038/s41534-025-00974-6","DOIUrl":null,"url":null,"abstract":"<p>A periodically driven superconducting nonlinear resonator can implement a Kerr-cat qubit, which provides a promising route to a quantum computer with a long lifetime. However, the system is vulnerable to pure dephasing, which causes unwanted excitations outside the qubit subspace. Therefore, we require a refrigeration technology that confines the system in the qubit subspace. We theoretically study on-chip refrigeration for Kerr-cat qubits based on photon-assisted electron tunneling at tunneling junctions, called quantum circuit refrigerators (QCR). Rates of QCR-induced deexcitations of the system can be changed by more than four orders of magnitude by tuning a bias voltage across the tunneling junctions. Unwanted QCR-induced bit flips are greatly suppressed due to quantum interference in the tunneling process, and thus the long lifetime is preserved. The QCR can serve as a tunable dissipation source that stabilizes Kerr-cat qubits.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"14 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of Kerr-cat qubits with quantum circuit refrigerator\",\"authors\":\"Shumpei Masuda, Shunsuke Kamimura, Tsuyoshi Yamamoto, Takaaki Aoki, Akiyoshi Tomonaga\",\"doi\":\"10.1038/s41534-025-00974-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A periodically driven superconducting nonlinear resonator can implement a Kerr-cat qubit, which provides a promising route to a quantum computer with a long lifetime. However, the system is vulnerable to pure dephasing, which causes unwanted excitations outside the qubit subspace. Therefore, we require a refrigeration technology that confines the system in the qubit subspace. We theoretically study on-chip refrigeration for Kerr-cat qubits based on photon-assisted electron tunneling at tunneling junctions, called quantum circuit refrigerators (QCR). Rates of QCR-induced deexcitations of the system can be changed by more than four orders of magnitude by tuning a bias voltage across the tunneling junctions. Unwanted QCR-induced bit flips are greatly suppressed due to quantum interference in the tunneling process, and thus the long lifetime is preserved. The QCR can serve as a tunable dissipation source that stabilizes Kerr-cat qubits.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-00974-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00974-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Stabilization of Kerr-cat qubits with quantum circuit refrigerator
A periodically driven superconducting nonlinear resonator can implement a Kerr-cat qubit, which provides a promising route to a quantum computer with a long lifetime. However, the system is vulnerable to pure dephasing, which causes unwanted excitations outside the qubit subspace. Therefore, we require a refrigeration technology that confines the system in the qubit subspace. We theoretically study on-chip refrigeration for Kerr-cat qubits based on photon-assisted electron tunneling at tunneling junctions, called quantum circuit refrigerators (QCR). Rates of QCR-induced deexcitations of the system can be changed by more than four orders of magnitude by tuning a bias voltage across the tunneling junctions. Unwanted QCR-induced bit flips are greatly suppressed due to quantum interference in the tunneling process, and thus the long lifetime is preserved. The QCR can serve as a tunable dissipation source that stabilizes Kerr-cat qubits.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.