{"title":"在400k以上,氢化褐磨矿氧化铁膜具有明显的配位,具有坚固的铁磁绝缘相","authors":"Jiahui Ou, Haiping Zhou, Haoliang Huang, Feng Rao, Xierong Zeng, Lang Chen, Ruiwen Shao, Manyi Duan, Chuanwei Huang","doi":"10.1063/5.0241360","DOIUrl":null,"url":null,"abstract":"Ferromagnetic insulators (FMIs) with excellent optical transparency are highly appealing materials for advanced magneto-optical and spintronic devices. However, their applications have been substantially hindered for decades due to the limited availability of FMIs with low Curie temperature Tc and frustrated optical transparency. Herein, we reported that hydrogenated BaFeO2.5 films via facile and effective hydrogen plasma treatment exhibit consecutive structural transformations, accompanying with robust ferromagnetic insulating states with Tc > 400 K and desirable optical transparency with spectral range from visible to infrared. We elucidate the effect of reconfigurations of Fe-O coordinate geometry with distinct crystal structures on the emergent electronic properties of hydrogenated BaFeO2.5 films by combining experimental measurements and theoretical calculations. These findings underscore the importance of engineering polyhedral coordinate of perovskite-derived oxides in surmounting the inherent trade-off between ferromagnetism and electric insulation and open up opportunities for manipulating multifunctional electronic materials.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"19 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Above 400 K robust ferromagnetic insulating phase in hydrogenated brownmillerite iron oxide films with distinct coordinate\",\"authors\":\"Jiahui Ou, Haiping Zhou, Haoliang Huang, Feng Rao, Xierong Zeng, Lang Chen, Ruiwen Shao, Manyi Duan, Chuanwei Huang\",\"doi\":\"10.1063/5.0241360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferromagnetic insulators (FMIs) with excellent optical transparency are highly appealing materials for advanced magneto-optical and spintronic devices. However, their applications have been substantially hindered for decades due to the limited availability of FMIs with low Curie temperature Tc and frustrated optical transparency. Herein, we reported that hydrogenated BaFeO2.5 films via facile and effective hydrogen plasma treatment exhibit consecutive structural transformations, accompanying with robust ferromagnetic insulating states with Tc > 400 K and desirable optical transparency with spectral range from visible to infrared. We elucidate the effect of reconfigurations of Fe-O coordinate geometry with distinct crystal structures on the emergent electronic properties of hydrogenated BaFeO2.5 films by combining experimental measurements and theoretical calculations. These findings underscore the importance of engineering polyhedral coordinate of perovskite-derived oxides in surmounting the inherent trade-off between ferromagnetism and electric insulation and open up opportunities for manipulating multifunctional electronic materials.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0241360\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0241360","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Above 400 K robust ferromagnetic insulating phase in hydrogenated brownmillerite iron oxide films with distinct coordinate
Ferromagnetic insulators (FMIs) with excellent optical transparency are highly appealing materials for advanced magneto-optical and spintronic devices. However, their applications have been substantially hindered for decades due to the limited availability of FMIs with low Curie temperature Tc and frustrated optical transparency. Herein, we reported that hydrogenated BaFeO2.5 films via facile and effective hydrogen plasma treatment exhibit consecutive structural transformations, accompanying with robust ferromagnetic insulating states with Tc > 400 K and desirable optical transparency with spectral range from visible to infrared. We elucidate the effect of reconfigurations of Fe-O coordinate geometry with distinct crystal structures on the emergent electronic properties of hydrogenated BaFeO2.5 films by combining experimental measurements and theoretical calculations. These findings underscore the importance of engineering polyhedral coordinate of perovskite-derived oxides in surmounting the inherent trade-off between ferromagnetism and electric insulation and open up opportunities for manipulating multifunctional electronic materials.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.