异质界面态的协调以增强电磁波吸收的内置电场效应

IF 14.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hongbao Zhu, Yi Yan, Jintang Zhou, Jiaqi Tao, Kexin Zou, Zhenyu Cheng, Zhengjun Yao, Xuewei Tao, Yiming Lei, Yao Ma, Peijiang Liu, Hexia Huang
{"title":"异质界面态的协调以增强电磁波吸收的内置电场效应","authors":"Hongbao Zhu, Yi Yan, Jintang Zhou, Jiaqi Tao, Kexin Zou, Zhenyu Cheng, Zhengjun Yao, Xuewei Tao, Yiming Lei, Yao Ma, Peijiang Liu, Hexia Huang","doi":"10.1016/j.jmst.2024.12.043","DOIUrl":null,"url":null,"abstract":"Heterointerface engineering based on built-in electric field (BIEF) has been well-received in electromagnetic wave (EMW) absorption. However, the influence of interface size and number of interfaces on the BIEF and interface polarization loss mechanism remains unclear. Here, we designed a ternary dual heterointerfaces Co@C/SiO<sub>2</sub> nanocomposite. Experimental and theoretical analyses show that Co@C/SiO<sub>2</sub> has abundant Mott-Schottky heterointerfaces, and a reasonable increase in the heterointerface area leads to a strong BIEF effect, where the charge accumulates at the interface and subsequently migrates along the direction of the alternating electromagnetic field to promote the dissipation of EMW by polarization loss. However, an excessive number of interfaces leads to many carriers being bound by the interfaces, which is not conducive to forming electron channels. By coordinating the heterointerface states to achieve optimal EMW absorption performance, SZ-3 can accomplish an effective absorption width (EAB) of 5.93 GHz at a thickness of 1.91 mm. This work provides new ideas and methods for BIEF-based heterointerface engineering applied to EMW absorption materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"17 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonization of heterointerface states to enhance built-in electric field effects for electromagnetic wave absorption\",\"authors\":\"Hongbao Zhu, Yi Yan, Jintang Zhou, Jiaqi Tao, Kexin Zou, Zhenyu Cheng, Zhengjun Yao, Xuewei Tao, Yiming Lei, Yao Ma, Peijiang Liu, Hexia Huang\",\"doi\":\"10.1016/j.jmst.2024.12.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterointerface engineering based on built-in electric field (BIEF) has been well-received in electromagnetic wave (EMW) absorption. However, the influence of interface size and number of interfaces on the BIEF and interface polarization loss mechanism remains unclear. Here, we designed a ternary dual heterointerfaces Co@C/SiO<sub>2</sub> nanocomposite. Experimental and theoretical analyses show that Co@C/SiO<sub>2</sub> has abundant Mott-Schottky heterointerfaces, and a reasonable increase in the heterointerface area leads to a strong BIEF effect, where the charge accumulates at the interface and subsequently migrates along the direction of the alternating electromagnetic field to promote the dissipation of EMW by polarization loss. However, an excessive number of interfaces leads to many carriers being bound by the interfaces, which is not conducive to forming electron channels. By coordinating the heterointerface states to achieve optimal EMW absorption performance, SZ-3 can accomplish an effective absorption width (EAB) of 5.93 GHz at a thickness of 1.91 mm. This work provides new ideas and methods for BIEF-based heterointerface engineering applied to EMW absorption materials.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.12.043\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.043","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于内建电场(BIEF)的异质界面工程在电磁波吸收领域得到了广泛的应用。然而,界面尺寸和界面数量对BIEF和界面极化损耗机制的影响尚不清楚。本文设计了三元双异质界面Co@C/SiO2纳米复合材料。实验和理论分析表明,Co@C/SiO2具有丰富的Mott-Schottky异质界面,异质界面面积的合理增大导致了较强的BIEF效应,电荷在界面处聚集,并沿交变电磁场方向迁移,促进了EMW的极化损耗耗散。然而,过多的界面导致许多载流子被界面束缚,不利于形成电子通道。通过协调异质界面态来实现最佳的EMW吸收性能,SZ-3在1.91 mm的厚度下可以实现5.93 GHz的有效吸收宽度(EAB)。本工作为基于bief的异质界面工程应用于EMW吸收材料提供了新的思路和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harmonization of heterointerface states to enhance built-in electric field effects for electromagnetic wave absorption

Harmonization of heterointerface states to enhance built-in electric field effects for electromagnetic wave absorption
Heterointerface engineering based on built-in electric field (BIEF) has been well-received in electromagnetic wave (EMW) absorption. However, the influence of interface size and number of interfaces on the BIEF and interface polarization loss mechanism remains unclear. Here, we designed a ternary dual heterointerfaces Co@C/SiO2 nanocomposite. Experimental and theoretical analyses show that Co@C/SiO2 has abundant Mott-Schottky heterointerfaces, and a reasonable increase in the heterointerface area leads to a strong BIEF effect, where the charge accumulates at the interface and subsequently migrates along the direction of the alternating electromagnetic field to promote the dissipation of EMW by polarization loss. However, an excessive number of interfaces leads to many carriers being bound by the interfaces, which is not conducive to forming electron channels. By coordinating the heterointerface states to achieve optimal EMW absorption performance, SZ-3 can accomplish an effective absorption width (EAB) of 5.93 GHz at a thickness of 1.91 mm. This work provides new ideas and methods for BIEF-based heterointerface engineering applied to EMW absorption materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信